In this work, we will prove the existence of bounded solutions m W0' (f) N L (fl) for nonlinear elliptic equations - div(a(x,u, Vu)) +g(x,u,Vu) + H(x, Vu) = f, where a, g and H are Carath6odory function...In this work, we will prove the existence of bounded solutions m W0' (f) N L (fl) for nonlinear elliptic equations - div(a(x,u, Vu)) +g(x,u,Vu) + H(x, Vu) = f, where a, g and H are Carath6odory functions which satisfy some conditions, and the rizht hand side f belongs to W-l'q (Ω).展开更多
The first part of this paper is devoted to study the existence of solution for nonlinear p(x) elliptic problem A(u) =u in Ω, u = 0 on Ω, with a right-hand side measure, where Ω is a bounded open set of RN, N ...The first part of this paper is devoted to study the existence of solution for nonlinear p(x) elliptic problem A(u) =u in Ω, u = 0 on Ω, with a right-hand side measure, where Ω is a bounded open set of RN, N ≥ 2 and A (u) = -div(a (x, u, u)) is a Leray-Lions operator defined from W 0 1,p(x) (Ω) in to its dual W-1,p'(x) (Ω). However the second part concerns the existence solution, of the following setting nonlinear elliptic problems A(u)+g(x,u, u) = u in Ω, u = 0 on Ω. We will give some regularity results for these solutions.展开更多
文摘In this work, we will prove the existence of bounded solutions m W0' (f) N L (fl) for nonlinear elliptic equations - div(a(x,u, Vu)) +g(x,u,Vu) + H(x, Vu) = f, where a, g and H are Carath6odory functions which satisfy some conditions, and the rizht hand side f belongs to W-l'q (Ω).
文摘The first part of this paper is devoted to study the existence of solution for nonlinear p(x) elliptic problem A(u) =u in Ω, u = 0 on Ω, with a right-hand side measure, where Ω is a bounded open set of RN, N ≥ 2 and A (u) = -div(a (x, u, u)) is a Leray-Lions operator defined from W 0 1,p(x) (Ω) in to its dual W-1,p'(x) (Ω). However the second part concerns the existence solution, of the following setting nonlinear elliptic problems A(u)+g(x,u, u) = u in Ω, u = 0 on Ω. We will give some regularity results for these solutions.