The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digit...The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digital humanities and computational criticism in recent years.During his visiting scholarship at Stanford University,he participated in the activities of the Literary Lab.Taking this opportunity,he interviewed Professor Mark Algee-Hewitt,the director of the Literary Lab,discussing important topics such as the current state and reception of DH(digital humanities)in the English Department,the operations of the Literary Lab,and the landscape of computational criticism.Mark Algee-Hewitt's research focuses on the eighteenth and early nineteenth centuries in England and Germany and seeks to combine literary criticism with digital and quantitative analyses of literary texts.In particular,he is interested in the history of aesthetic theory and the development and transmission of aesthetic and philosophical concepts during the Enlightenment and Romantic periods.He is also interested in the relationship between aesthetic theory and the poetry of the long eighteenth century.Although his primary background is English literature,he also has a degree in computer science.He believes that the influence of digital humanities within the humanities disciplines is growing increasingly significant.This impact is evident in both the attraction and assistance it offers to students,as well as in the new interpretations it brings to traditional literary studies.He argues that the key to effectively integrating digital humanities into the English Department is to focus on literary research questions,exploring how digital tools can raise new questions or provide new insights into traditional research.展开更多
Mastitis is an inflammatory infection of the mammary glands that is frequently observed in animals. The aim of this study was to determine the prevalence of this infection, identify the pathogens responsible and highl...Mastitis is an inflammatory infection of the mammary glands that is frequently observed in animals. The aim of this study was to determine the prevalence of this infection, identify the pathogens responsible and highlight the risk factors in the region of Labé (Republic of Guinea). The survey involved 96 farmers in three prefectures (Koubia, Labé, Lélouma) and covered 3,199 animals, including 611 lactating females. The clinical survey revealed 49 suspected cases of mastitis, mainly in goats. The analysis showed a prevalence of clinical mastitis of 2.95% and a mortality rate of 18.35%. The identified risk factors were the hygiene of the premises, the age of the females, husbandry practices and the lack of regular veterinary care.展开更多
Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a trans...Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT).展开更多
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat...Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.展开更多
Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded...Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded organic frameworks(HOFs)have promising application potential for embedding enzymes.In fact,no metal involvement is required,and HOFs exhibit superior biocompatibility,and free access to substrates in mesoporous channels.Herein,a facile in situ growth approach was proposed for the self-assembly of alcohol dehydrogenase encapsulated in HOF.The micron-scale bio-catalytic composite was rapidly synthesized under mild conditions(aqueous phase and ambient temperature)with a controllable embedding rate.The high crystallinity and periodic arrangement channels of HOF were preserved at a high enzyme encapsulation efficiency of 59%.This bio-composite improved the tolerance of the enzyme to the acid-base environment and retained 81%of its initial activity after five cycles of batch hydrogenation involving NADH coenzyme.Based on this controllably synthesized bio-catalytic material and a common lipase,we further developed a two-stage cascade microchemical system and achieved the continuous production of chiral hydroxybutyric acid(R-3-HBA).展开更多
Objective:Interpersonal brain synchronization(IBS)has emerged as a significant concept in understanding collaborative team dynamics,with functional near-infrared spectroscopy(fNIRS)proving to be a vital tool in its as...Objective:Interpersonal brain synchronization(IBS)has emerged as a significant concept in understanding collaborative team dynamics,with functional near-infrared spectroscopy(fNIRS)proving to be a vital tool in its assessment.This review aims to collate and analyze the literature on the application of fNIRS in various team settings,emphasizing its potential utility in surgical environments.Methods:A thorough search and screening process across multiple databases resulted in 17 studies being reviewed,with a focus on the utilization of fNIRS to measure IBS in different collaborative tasks.This review examined the tasks employed,participant demographics,organizational structures of teams,methodologies for IBS measurement,and correlations between brain synchronization and behavioral measurements.Results:fNIRS emerged as a non-invasive,cost-effective,and portable tool,predominantly used to assess IBS in pair-based tasks with a variety of participant demographics.Wavelet transform coherence was the primary method used for measuring synchronization,particularly in the prefrontal brain region.A consistent correlation was found between increased brain synchronization and enhanced team performance,underscoring the potential of fNIRS in understanding and optimizing team dynamics.Conclusion:This review establishes fNIRS as a promising tool for investigating the neural mechanisms underlying team cooperation,providing invaluable insights for potential applications in surgical settings.While acknowledging the limitations in the current literature,the review highlights the need for further research with larger sample sizes and varied task complexities to solidify the understanding of IBS and its impact on team performance.The ultimate goal is to leverage fNIRS in assessing and improving surgical team dynamics,contributing to improved patient outcomes and safety.展开更多
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ...As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.展开更多
With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycli...With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycling of renewable and environmentally friendly bio-based polymers as alternatives to petroleum based polymers have become hot topics in research and industrial fields.Biomass has been used as a raw material to design and synthesize closed-loop recyclable polymers,which is of great significance in addressing the waste of resources and negative impact on the environment in the traditional polymer preparation process.This review summarized recent advances in the design,synthesis,and properties of closed-loop recyclable bio-based polymers,focusing on the sustainability and recyclability of bio-based materials,followed by a brief discussion of the potential applications of closed-loop recyclable bio-based polymers in emerging applications such as 3D printing and friction electric nanogenerators.In addition,perspectives and recommendations for future research on closedloop recyclable bio-based polymers were presented.展开更多
Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies...Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.展开更多
Tyrosine residues in proteins can be nitrated to form 3-nitrotyrosine(3-NT)under the influence of ozone(O_(3))and nitrogen dioxide(NO_(2))in the air,which may introduce health impacts.A selective and sensitive enzyme-...Tyrosine residues in proteins can be nitrated to form 3-nitrotyrosine(3-NT)under the influence of ozone(O_(3))and nitrogen dioxide(NO_(2))in the air,which may introduce health impacts.A selective and sensitive enzyme-linked-immunoassay(ELISA)method was developed to determine 3-NT in modified model protein(bovine serum albumin,BSA)and ambient aerosol samples.The nitration degrees(NDs)of BSA in the exposure experiments with different durations were detected by both the ELISA and spectrophotometric methods(i.e.,ND_(ELISA) and ND_(SEC-PDA)),which show good coincidence.The kinetic investigation by both ΔND_(ELISA) and ΔND_(SEC-PDA) in the exposure experiments shows that the rate coefficients(k)of the pseudo-first-order kinetic rate reactions of protein nitration were comparable.These results indicate that direct detection of 3-NT by the ELISA method can be applied for laboratory exposure samples analysis for kinetic studies.Based on the selective detection of 3-NT,ND_(ELISA) provides a promising measure for the assessment of ND in model proteins.3-NT was alsomeasured in PM_(2.5) samples in summer in Guangzhou,southern China,ranging from 10.1 to 404 pg/m^(3),providing clear evidence of protein nitration in ambient aerosols.We further proposed that 3-NT/protein can be used as a proxy to evaluate protein nitration in ambient aerosols.A significant correlationwas observed between 3-NT/protein and O_(3),confirming the crucial role of O_(3) in protein nitration.Our results show that the direct detection of 3-NT by the ELISA method can be more widely applied in the laboratory and field-based studies for understanding the mechanisms of protein nitration.展开更多
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg...Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Two distinctive rearranged 19-nor-7,8-seco-labdane diterpenoids(1 and 2)with a novel tetracyclo[5.2.1.0^(2,5.)0^(4,10)]decane skeleton,a derivative of the open tetrahydrofuran ring(7),three dimeric compounds(8-10),and...Two distinctive rearranged 19-nor-7,8-seco-labdane diterpenoids(1 and 2)with a novel tetracyclo[5.2.1.0^(2,5.)0^(4,10)]decane skeleton,a derivative of the open tetrahydrofuran ring(7),three dimeric compounds(8-10),and four revised homologs(3-6)were obtained from Chinese liverwort Pallavicinia ambigua.Their structures were identified via combined analysis of their spectroscopic data,single-crystal X-ray diffraction patterns,and ECD calculations.The light-driven conversion of compound 5 to compounds 1-4 demonstrated that photochemically induced postmodification involved in biosynthesis is an important way to diversify natural structures.A preliminary cytotoxicity assay revealed that compound 5 showed significant inhibition in the human prostate cancer(PC-3)cell line via an apoptotic pathway.展开更多
Chemical modifications of proteins induced by ambient ozone(O_(3))and nitrogen oxides(NOx)are of public health concerns due to their potential to trigger respiratory diseases.The laboratory and environmental exposure ...Chemical modifications of proteins induced by ambient ozone(O_(3))and nitrogen oxides(NOx)are of public health concerns due to their potential to trigger respiratory diseases.The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere.Using bovine serum albumin(BSA)as a model protein,we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study.In the laboratory simulation system,the generated gaseous pollutants showed negligible losses.Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%.For environmental exposure experiment,quartz fiber filter was selected as the upper filter with low gaseous O_(3)(8.0%)and NO_(2)(1.7%)losses,and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%.The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions,while environmental factors(e.g.,molecular oxygen and ultraviolet)may cause greater protein monomer losses.Based on the evaluation,the study exemplarily applied the two systems to protein modification and both showed that O_(3) promotes the protein oligomerization and nitration,while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples.The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions.A combination of the two will further reveal the actual mechanism of protein modifications.展开更多
文摘The Literary Lab at Stanford University is one of the birthplaces of digital humanities and has maintained significant influence in this field over the years.Professor Hui Haifeng has been engaged in research on digital humanities and computational criticism in recent years.During his visiting scholarship at Stanford University,he participated in the activities of the Literary Lab.Taking this opportunity,he interviewed Professor Mark Algee-Hewitt,the director of the Literary Lab,discussing important topics such as the current state and reception of DH(digital humanities)in the English Department,the operations of the Literary Lab,and the landscape of computational criticism.Mark Algee-Hewitt's research focuses on the eighteenth and early nineteenth centuries in England and Germany and seeks to combine literary criticism with digital and quantitative analyses of literary texts.In particular,he is interested in the history of aesthetic theory and the development and transmission of aesthetic and philosophical concepts during the Enlightenment and Romantic periods.He is also interested in the relationship between aesthetic theory and the poetry of the long eighteenth century.Although his primary background is English literature,he also has a degree in computer science.He believes that the influence of digital humanities within the humanities disciplines is growing increasingly significant.This impact is evident in both the attraction and assistance it offers to students,as well as in the new interpretations it brings to traditional literary studies.He argues that the key to effectively integrating digital humanities into the English Department is to focus on literary research questions,exploring how digital tools can raise new questions or provide new insights into traditional research.
文摘Mastitis is an inflammatory infection of the mammary glands that is frequently observed in animals. The aim of this study was to determine the prevalence of this infection, identify the pathogens responsible and highlight the risk factors in the region of Labé (Republic of Guinea). The survey involved 96 farmers in three prefectures (Koubia, Labé, Lélouma) and covered 3,199 animals, including 611 lactating females. The clinical survey revealed 49 suspected cases of mastitis, mainly in goats. The analysis showed a prevalence of clinical mastitis of 2.95% and a mortality rate of 18.35%. The identified risk factors were the hygiene of the premises, the age of the females, husbandry practices and the lack of regular veterinary care.
文摘Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT).
基金supported by the National Natural Science Foundation of China(62302167,62477013)Natural Science Foundation of Shanghai(No.24ZR1456100)+1 种基金Science and Technology Commission of Shanghai Municipality(No.24DZ2305900)the Shanghai Municipal Special Fund for Promoting High-Quality Development of Industries(2211106).
文摘Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.
基金supported by the National Key Research and Development Program of China(2019YFA0905100)the National Natural Science Foundation of China(21991102,22378227).
文摘Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded organic frameworks(HOFs)have promising application potential for embedding enzymes.In fact,no metal involvement is required,and HOFs exhibit superior biocompatibility,and free access to substrates in mesoporous channels.Herein,a facile in situ growth approach was proposed for the self-assembly of alcohol dehydrogenase encapsulated in HOF.The micron-scale bio-catalytic composite was rapidly synthesized under mild conditions(aqueous phase and ambient temperature)with a controllable embedding rate.The high crystallinity and periodic arrangement channels of HOF were preserved at a high enzyme encapsulation efficiency of 59%.This bio-composite improved the tolerance of the enzyme to the acid-base environment and retained 81%of its initial activity after five cycles of batch hydrogenation involving NADH coenzyme.Based on this controllably synthesized bio-catalytic material and a common lipase,we further developed a two-stage cascade microchemical system and achieved the continuous production of chiral hydroxybutyric acid(R-3-HBA).
文摘Objective:Interpersonal brain synchronization(IBS)has emerged as a significant concept in understanding collaborative team dynamics,with functional near-infrared spectroscopy(fNIRS)proving to be a vital tool in its assessment.This review aims to collate and analyze the literature on the application of fNIRS in various team settings,emphasizing its potential utility in surgical environments.Methods:A thorough search and screening process across multiple databases resulted in 17 studies being reviewed,with a focus on the utilization of fNIRS to measure IBS in different collaborative tasks.This review examined the tasks employed,participant demographics,organizational structures of teams,methodologies for IBS measurement,and correlations between brain synchronization and behavioral measurements.Results:fNIRS emerged as a non-invasive,cost-effective,and portable tool,predominantly used to assess IBS in pair-based tasks with a variety of participant demographics.Wavelet transform coherence was the primary method used for measuring synchronization,particularly in the prefrontal brain region.A consistent correlation was found between increased brain synchronization and enhanced team performance,underscoring the potential of fNIRS in understanding and optimizing team dynamics.Conclusion:This review establishes fNIRS as a promising tool for investigating the neural mechanisms underlying team cooperation,providing invaluable insights for potential applications in surgical settings.While acknowledging the limitations in the current literature,the review highlights the need for further research with larger sample sizes and varied task complexities to solidify the understanding of IBS and its impact on team performance.The ultimate goal is to leverage fNIRS in assessing and improving surgical team dynamics,contributing to improved patient outcomes and safety.
基金supported in part by National Natural Science Foundation of China under Grant 62201087,Grant 62525101,in part by the National Key R&D Program of China under Grant 2023YFB2904803in part by the Guangdong Major Project of Basic and Applied Basic Research under Grant 2023B0303000001+1 种基金in part by the Natural Science Foundation of Beijing-Xiaomi Innovation Joint Foundation under Grant L243002in part by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Institute.
文摘As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.
基金Natural Science Foundation of China(Grant Nos.32471815 and 32401528)Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK20241745 and BK20240294).
文摘With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycling of renewable and environmentally friendly bio-based polymers as alternatives to petroleum based polymers have become hot topics in research and industrial fields.Biomass has been used as a raw material to design and synthesize closed-loop recyclable polymers,which is of great significance in addressing the waste of resources and negative impact on the environment in the traditional polymer preparation process.This review summarized recent advances in the design,synthesis,and properties of closed-loop recyclable bio-based polymers,focusing on the sustainability and recyclability of bio-based materials,followed by a brief discussion of the potential applications of closed-loop recyclable bio-based polymers in emerging applications such as 3D printing and friction electric nanogenerators.In addition,perspectives and recommendations for future research on closedloop recyclable bio-based polymers were presented.
基金supported by the National Natural Science Foundation of Shandong(No.ZR2020ZD20)the National Natural Science Foundation of China(No.22193051)+1 种基金the National Young Top-Notch Talents(No.W03070030)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y202011).
文摘Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies.
基金supported by the National Natural Science Foundation of China(No.41975156).
文摘Tyrosine residues in proteins can be nitrated to form 3-nitrotyrosine(3-NT)under the influence of ozone(O_(3))and nitrogen dioxide(NO_(2))in the air,which may introduce health impacts.A selective and sensitive enzyme-linked-immunoassay(ELISA)method was developed to determine 3-NT in modified model protein(bovine serum albumin,BSA)and ambient aerosol samples.The nitration degrees(NDs)of BSA in the exposure experiments with different durations were detected by both the ELISA and spectrophotometric methods(i.e.,ND_(ELISA) and ND_(SEC-PDA)),which show good coincidence.The kinetic investigation by both ΔND_(ELISA) and ΔND_(SEC-PDA) in the exposure experiments shows that the rate coefficients(k)of the pseudo-first-order kinetic rate reactions of protein nitration were comparable.These results indicate that direct detection of 3-NT by the ELISA method can be applied for laboratory exposure samples analysis for kinetic studies.Based on the selective detection of 3-NT,ND_(ELISA) provides a promising measure for the assessment of ND in model proteins.3-NT was alsomeasured in PM_(2.5) samples in summer in Guangzhou,southern China,ranging from 10.1 to 404 pg/m^(3),providing clear evidence of protein nitration in ambient aerosols.We further proposed that 3-NT/protein can be used as a proxy to evaluate protein nitration in ambient aerosols.A significant correlationwas observed between 3-NT/protein and O_(3),confirming the crucial role of O_(3) in protein nitration.Our results show that the direct detection of 3-NT by the ELISA method can be more widely applied in the laboratory and field-based studies for understanding the mechanisms of protein nitration.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22C130001)the National Natural Science Foundation of China(32171887,and 52002028,and 52192610)+1 种基金the National Key Research and Development Project from Minister of Science&Technology(2021YFA0202704)Beijing Municipal Science&Technology Commission(Z171100002017017).
文摘Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金national financial support from the National Key R&D Program of China(No.2019YFA0905700)the National Natural Science Foundation of China(Nos.82173703 and 81874293)the Major Basic Research Program of Shandong Provincial Natural Science Foundation(No.ZR2019ZD26)。
文摘Two distinctive rearranged 19-nor-7,8-seco-labdane diterpenoids(1 and 2)with a novel tetracyclo[5.2.1.0^(2,5.)0^(4,10)]decane skeleton,a derivative of the open tetrahydrofuran ring(7),three dimeric compounds(8-10),and four revised homologs(3-6)were obtained from Chinese liverwort Pallavicinia ambigua.Their structures were identified via combined analysis of their spectroscopic data,single-crystal X-ray diffraction patterns,and ECD calculations.The light-driven conversion of compound 5 to compounds 1-4 demonstrated that photochemically induced postmodification involved in biosynthesis is an important way to diversify natural structures.A preliminary cytotoxicity assay revealed that compound 5 showed significant inhibition in the human prostate cancer(PC-3)cell line via an apoptotic pathway.
基金supported by the National Natural Science Foundation of China(Nos.41975156,41675119)。
文摘Chemical modifications of proteins induced by ambient ozone(O_(3))and nitrogen oxides(NOx)are of public health concerns due to their potential to trigger respiratory diseases.The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere.Using bovine serum albumin(BSA)as a model protein,we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study.In the laboratory simulation system,the generated gaseous pollutants showed negligible losses.Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%.For environmental exposure experiment,quartz fiber filter was selected as the upper filter with low gaseous O_(3)(8.0%)and NO_(2)(1.7%)losses,and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%.The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions,while environmental factors(e.g.,molecular oxygen and ultraviolet)may cause greater protein monomer losses.Based on the evaluation,the study exemplarily applied the two systems to protein modification and both showed that O_(3) promotes the protein oligomerization and nitration,while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples.The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions.A combination of the two will further reveal the actual mechanism of protein modifications.