In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiograp...In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiography are based on the assumption that the cone beam can be treated as fan beams located at parallel planes perpendicular to the symmetric axis,so that the density of the whole object can be recovered layer by layer.Considering the relationship between different layers,we undertake the cone-beam global reconstruction to solve the ambiguity effect at the material interfaces of the reconstruction results.In view of the anisotropy of classical discrete total variations,a new discretization of total variation which yields sharp edges and has better isotropy is introduced in our reconstruction model.Furthermore,considering that the object density consists of continually changing parts and jumps,a high-order regularization term is introduced.The final hybrid regularization model is solved using the alternating proximal gradient method,which was recently applied in image processing.Density reconstruction results are presented for simulated radiographs,which shows that the proposed method has led to an improvement in terms of the preservation of edge location.展开更多
We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit,K-symplectic in the extended phase space with long time energy conservation properties. They are based on ex...We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit,K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for two non-canonical Hamiltonian systems. Numerical tests show that the proposed methods exhibit good numerical performance in preserving the phase orbit and the energy of the system over long time, whereas higher order Runge–Kutta methods do not preserve these properties. Numerical tests also show that the K-symplectic methods exhibit better efficiency than that of the same order implicit symplectic, explicit and implicit symplectic methods for the original nonseparable non-canonical systems. On the other hand, the fourth order K-symplectic method is more efficient than the fourth order Yoshida’s method, the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om explicit K-symplectic methods for the extended phase space Hamiltonians, but less efficient than the the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om extended phase space symplectic-like methods with the midpoint permutation.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corres...To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numeri- cal results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation.展开更多
基金supported by National Postdoctoral Program for Innovative Talents(BX201700038)supported by NSFC(11571003)+1 种基金supported by NSFC(11675021)supported by Beijing Natural Science Foundation(Z180002)。
文摘In this paper,we consider 3 D tomographic reconstruction for axially symmetric objects from a single radiograph formed by cone-beam X-rays.All contemporary density reconstruction methods in high-energy X-ray radiography are based on the assumption that the cone beam can be treated as fan beams located at parallel planes perpendicular to the symmetric axis,so that the density of the whole object can be recovered layer by layer.Considering the relationship between different layers,we undertake the cone-beam global reconstruction to solve the ambiguity effect at the material interfaces of the reconstruction results.In view of the anisotropy of classical discrete total variations,a new discretization of total variation which yields sharp edges and has better isotropy is introduced in our reconstruction model.Furthermore,considering that the object density consists of continually changing parts and jumps,a high-order regularization term is introduced.The final hybrid regularization model is solved using the alternating proximal gradient method,which was recently applied in image processing.Density reconstruction results are presented for simulated radiographs,which shows that the proposed method has led to an improvement in terms of the preservation of edge location.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11901564 and 12171466)。
文摘We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit,K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for two non-canonical Hamiltonian systems. Numerical tests show that the proposed methods exhibit good numerical performance in preserving the phase orbit and the energy of the system over long time, whereas higher order Runge–Kutta methods do not preserve these properties. Numerical tests also show that the K-symplectic methods exhibit better efficiency than that of the same order implicit symplectic, explicit and implicit symplectic methods for the original nonseparable non-canonical systems. On the other hand, the fourth order K-symplectic method is more efficient than the fourth order Yoshida’s method, the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om explicit K-symplectic methods for the extended phase space Hamiltonians, but less efficient than the the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om extended phase space symplectic-like methods with the midpoint permutation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based syn- chronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing convergence theory. Numeri- cal results show that the symmetric modulus-based multisplitting relaxation methods are effective in actual implementation.