The FAST radio telescope has significantly better sensitivity than any other current radio telescope.Consequently,FAST has discovered over a thousand new pulsars in sky regions already searched for 50 yr.The Galactic ...The FAST radio telescope has significantly better sensitivity than any other current radio telescope.Consequently,FAST has discovered over a thousand new pulsars in sky regions already searched for 50 yr.The Galactic Plane Pulsar Snapshot(GPPS)survey found three-quarters of these new pulsars.The article by Han et al.(2025)details the latest batch of 473 discoveries,bringing the total to 751.展开更多
Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint hea...Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention.However,there is no technology that can provide the precision,effectiveness,low-resource setting,and longterm wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments.Herein,we propose a piezoelectric boron nitride nanotubes(BNNTs)-based,AI-enabled wearable device for regular monitoring of joint torque.We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics.A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion,while concurrently realizing self-sufficient energy harvesting.With the help of a lightweight on-device artificial neural network,the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics,including torque,angle,and loading.A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation.This work offers a relatively low-cost wearable solution for effective,regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels,potentially producing wide-reaching global implications for joint health,MSK conditions,ageing,rehabilitation,personal health,and beyond.展开更多
The bioinert nature of polyether ether ketone(PEEK)material limits the widespread clinical application of PEEK implants.Although the porous structure is considered to improve osseointegration of PEEK implants,it is ha...The bioinert nature of polyether ether ketone(PEEK)material limits the widespread clinical application of PEEK implants.Although the porous structure is considered to improve osseointegration of PEEK implants,it is hardly used due to its mechanical properties.This study investigated the combined influence of the porous structure and in vivo mechanical stimulation on implantation safety and bone growth based on finite element analysis of the biomechanical behavior of the implantation system.The combined control of pore size and screw preloads allows the porous PEEK implant to achieve good osseointegration while maintaining a relatively high safety level.A pore size of 600μm and a preload of 0.05 N·m are the optimal combination for the long-term stability of the implant,with which the safety factor of the implant is>2,and the predicted percentage of effective bone growth area of the bone-implant interface reaches 97%.For further clinical application,PEEK implants were fabricated with fused filament fabrication(FFF)three-dimensional(3D)printing,and clinical outcomes demonstrated better bone repair efficacy and long-term stability of porous PEEK implants compared to solid PEEK implants.Moreover,good osteointegration performance of 3D-printed porous PEEK implants was observed,with an average bone volume fraction>40%three months after implantation.In conclusion,3D-printed porous PEEK implants have great potential for clinical application,with validated implantation safety and good osseointegration.展开更多
In the current settings of osteosarcoma research and drug screening,in vitro three-dimensional(3D)models,which overcome the limitations of traditional models,are favored.In in vitro 3D models,tumor microenvironment si...In the current settings of osteosarcoma research and drug screening,in vitro three-dimensional(3D)models,which overcome the limitations of traditional models,are favored.In in vitro 3D models,tumor microenvironment simulation,particularly of the mechanical microenvironment,is crucial for estimating the biological effects of a tumor.However,current in vitro osteosarcoma model construction is often limited to a single mechanical signal,which fails to simulate the diversity of osteosarcoma mechanical stimuli.In this study,we utilized embedded bioprinting technology and the multiple response properties of calcium ions in soft and hard stiffness systems with osteosarcoma cell biological functions to construct an integrated gradient biomechanical signal-tailored osteosarcoma model(IGBSTOM).We achieved this by printing a fibrinogen bioink containing calcium ions and osteosarcoma tumor spheroids within an extracellular matrix composed of methacryloylated alginate,methacryloylated gelatin,thrombin,and transglutaminase,which is rich in polysaccharides and proteins and exhibits self-healing properties.Our in vitro and in vivo studies showed that the IGBSTOM enhanced tumor stemness,proliferation,and migration,and successfully reproduced the nest-like structure of tumors,providing an in vitro research platform that is more similar to the natural tumor than the existing models.This study proposes a novel IGBSTOM construction and provides a new strategy for the clinical understanding of tumor development,drug screening,and exploration of drug resistance and metastasis mechanisms.展开更多
Reservoir characterization refers to the process of creating a comprehensive model that characterizes the reservoir based on its ability to store and produce hydrocarbons.This includes analyzing reservoir fluid behavi...Reservoir characterization refers to the process of creating a comprehensive model that characterizes the reservoir based on its ability to store and produce hydrocarbons.This includes analyzing reservoir fluid behavior under various conditions and identifying optimal production techniques to maximize hydrocarbon recovery.For this,a holistic understanding is required that integrates data from geophysics,geostatistics,petrophysics,geology,and reservoir engineering.展开更多
The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cel...The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cell types and heterogeneity in the respiratory system,the relevant specific spatial localization and cellular interactions have not been clearly elucidated.Spatial transcriptomics(ST)has filled this gap and has been widely used in respiratory studies.This review focuses on the latest iterative technology of ST in recent years,summarizing how ST can be applied to the physiological and pathological processes of the respiratory system,with emphasis on the lungs.Finally,the current challenges and potential development directions are proposed,including high-throughput full-length transcriptome,integration of multi-omics,temporal and spatial omics,bioinformatics analysis,etc.These viewpoints are expected to advance the study of systematic mechanisms,including respiratory studies.展开更多
In this work,we studied the electronic and magnetic properties of the double perovskite Sr_(2)CrMoO_(6)using ab initio calculations with generalized gradient approximation(GGA)and Monte Carlo(MC)simulations.The compou...In this work,we studied the electronic and magnetic properties of the double perovskite Sr_(2)CrMoO_(6)using ab initio calculations with generalized gradient approximation(GGA)and Monte Carlo(MC)simulations.The compound has two magnetic sublattices:one occupied by Mo5+with spin(S=1/2)and the other by Cr^(3+)with spin(σ=3/2)The results showed halfmetallic behavior with a total magnetic moment of 2.0μB.Using Monte Carlo simulations,we investigated the phase transitions and observed interesting phenomena such as a critical endpoint and both second-order and first-order phase transitions.Additionally,the results revealed compensation points for specific values of the crystal field.展开更多
Soft grippers are favored for handling delicate objects due to their compliance but often have lower load capacities compared to rigid ones.Variable Stiffness Module(VSM)offer a solution,balancing flexibility and load...Soft grippers are favored for handling delicate objects due to their compliance but often have lower load capacities compared to rigid ones.Variable Stiffness Module(VSM)offer a solution,balancing flexibility and load capacity,for which particle jamming is an effective technology for stiffness-tunable robots requiring safe interaction and load capacity.Specific applica-tions,such as rescue scenarios,require quantitative analysis to optimize VSM design parameters,which previous analytical models cannot effectively handle.To address this,a Grey-box model is proposed to analyze the mechanical response of the particle-jamming-based VSM by combining a White-box approach based on the virtual work principle with a Black-box approach that uses a shallow neural network method.The Grey-box model demonstrates a high level of accuracy in predict-ing the VSM force-height mechanical response curves,with errors below 15%in almost 90%of the cases and a maximum error of less than 25%.The model is used to optimize VSM design parameters,particularly those unexplored combinations.Our results from the load capacity and force distribution comparison tests indicate that the VSM,optimized through our methods,quantitatively meets the practical engineering requirements.展开更多
Compaction rates of sediments or volcaniclastic material are needed to reconstruct original thickness of a bed, which in turn is required to reconstruct subsidence rates, sea-level rise, or in the case of volcanielast...Compaction rates of sediments or volcaniclastic material are needed to reconstruct original thickness of a bed, which in turn is required to reconstruct subsidence rates, sea-level rise, or in the case of volcanielastic, the location or direction of the eruption site. The knowledge of compaction rates can also aid in the reconstruction of deformed fossils. The known shape of deformed fossils can allow the determination of the compaction they experienced. Here we report the compaction rate in an early Permian volcanic tuff from Wuda, Inner Mongolia, determined from the deformation of standing tree fern stems of known anatomy. The compaction rate has been found to be 0.56 in this case, indicating that 44% of original thickness remains.展开更多
Ultrafast laser inscription(ULI)inside semiconductors offers new perspectives for 3D monolithic structures to be fabricated and new functionalities to be added in electronic and photonic microdevices.However,important...Ultrafast laser inscription(ULI)inside semiconductors offers new perspectives for 3D monolithic structures to be fabricated and new functionalities to be added in electronic and photonic microdevices.However,important challenges remain because of nonlinear effects such as strong plasma generation that distort the energy delivery at the focal point when exposing these materials to intense infrared light.Up to now,the successful technological demonstrations have primarily concentrated on silicon(Si).In this paper,we target at another important semiconductor:gallium arsenide(GaAs).With nonlinearities higher than those of Si,3D-machining of GaAs with femtosecond pulses becomes even harder.However,we show that the difficulty can be circumvented by burst-mode irradiation.We generate and apply trains of pulses at terahertz repetition rates for efficient pulse-to-pulse accumulation of laser-induced free carriers in the focal region,while avoiding an overdose of prefocal excitations.The superior performance of burst-mode irradiation is confirmed by a comparative study conducted with infrared luminescence microscopy.The results indicate a successful reduction of the plasma density in the prefocal region so that higher pulse energy reaches the focal spot.The same method is applied to identify optimum irradiation conditions considering particular cases such as asymmetric pulse trains and aberrated beams.With 64-pulse trains,we successfully manage to cross the writing threshold providing a solution for ULI inside GaAs.The application potential is finally illustrated with a stealth dicing demonstration by taking benefit of the burst mode.The irradiation method opens wide possibilities for 3D structuring inside GaAs by ULI.展开更多
AIM: To determine the cut-off values of body mass index(BMI) and waist circumference to predict hypertension in adults in north India.METHODS: A community based cross-sectional study was conducted in 801 subjects in K...AIM: To determine the cut-off values of body mass index(BMI) and waist circumference to predict hypertension in adults in north India.METHODS: A community based cross-sectional study was conducted in 801 subjects in Kanpur, aged 20 years and above, using multistage stratified random sampling technique. A pre-tested structured question-naire was used to elicit the required information from the study participants and the diagnostic criteria for hypertension were taken according to the Seventh Joint National Committee Report on Hypertension(JNC-7). Receiver operating characteristic(ROC) analysis was used to estimate the cut-off values of BMI and waist circumference to predict hypertension.RESULTS: The ROC analysis revealed that BMI is a good predictor of hypertension for both men(area under the ROC curve 0.714) and women(area under the ROC curve 0.821). The cut-off values of BMI for predicting hypertension were identified as ≥ 24.5 kg/m2 in men and ≥ 24.9 kg/m2 in women. Similarly, the ROC analysis for waist circumference showed that it is a good predictor of hypertension both for men(area under the ROC curve 0.784) and women(area under the ROC curve 0.815). The cut-offs for waist circumference for predicting hypertension were estimated as ≥ 83 cm for men and ≥ 78 cm for women. Adults with high BMI or high waist circumference had a higher prevalence of hypertension, respectively.CONCLUSION: Simple anthropometric measurements such as BMI and waist circumference can be used for screening people at increased risk of hypertension in order to refer them for more careful and early diagnostic evaluation. Policies and programs are required for primary and secondary prevention of hypertension.展开更多
文摘The FAST radio telescope has significantly better sensitivity than any other current radio telescope.Consequently,FAST has discovered over a thousand new pulsars in sky regions already searched for 50 yr.The Galactic Plane Pulsar Snapshot(GPPS)survey found three-quarters of these new pulsars.The article by Han et al.(2025)details the latest batch of 473 discoveries,bringing the total to 751.
基金support from the EPSRC REMIN project(EP/W009412/1)the UCL Fellowship Incubator Award+6 种基金the EPSRC award(TEGMOF EP/Z534146/1)for fundingfinancial support from the China Scholarship Councilfinancial support from UCL Research Excellence Scholarshipthe Wellcome Trust and EPSRC through the WEISS Centre(grant:203145Z/16/Z)at UCLsupport from the Royal Society Research Grant(RGSR2222333)Engineering and Physical Sciences Research Council Grant(13171178 R00287)European Innovative Council(EIC)under the European Union’s Horizon Europe research and innovation program(Grant agreement No.101099093)。
文摘Joint health is critical for musculoskeletal(MSK)conditions that are affecting approximately one-third of the global population.Monitoring of joint torque can offer an important pathway for the evaluation of joint health and guided intervention.However,there is no technology that can provide the precision,effectiveness,low-resource setting,and longterm wearability to simultaneously achieve both rapid and accurate joint torque measurement to enable risk assessment of joint injury and long-term monitoring of joint rehabilitation in wider environments.Herein,we propose a piezoelectric boron nitride nanotubes(BNNTs)-based,AI-enabled wearable device for regular monitoring of joint torque.We first adopted an iterative inverse design to fabricate the wearable materials with a Poisson's ratio precisely matched to knee biomechanics.A highly sensitive piezoelectric film was constructed based on BNNTs and polydimethylsiloxane and applied to precisely capture the knee motion,while concurrently realizing self-sufficient energy harvesting.With the help of a lightweight on-device artificial neural network,the proposed wearable device was capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to their corresponding physical characteristics,including torque,angle,and loading.A real-time platform was constructed to demonstrate the capability of fine real-time torque estimation.This work offers a relatively low-cost wearable solution for effective,regular joint torque monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels,potentially producing wide-reaching global implications for joint health,MSK conditions,ageing,rehabilitation,personal health,and beyond.
基金supported by the National Key R&D Program of China(No.2023YFB4603500)the Program for Innovation Team of Shaanxi Province(No.2023-CX-TD-17)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Shaanxi Province Qinchuangyuan“Scientist+Engineer”Team Construction Project(No.2022KXJ-106).
文摘The bioinert nature of polyether ether ketone(PEEK)material limits the widespread clinical application of PEEK implants.Although the porous structure is considered to improve osseointegration of PEEK implants,it is hardly used due to its mechanical properties.This study investigated the combined influence of the porous structure and in vivo mechanical stimulation on implantation safety and bone growth based on finite element analysis of the biomechanical behavior of the implantation system.The combined control of pore size and screw preloads allows the porous PEEK implant to achieve good osseointegration while maintaining a relatively high safety level.A pore size of 600μm and a preload of 0.05 N·m are the optimal combination for the long-term stability of the implant,with which the safety factor of the implant is>2,and the predicted percentage of effective bone growth area of the bone-implant interface reaches 97%.For further clinical application,PEEK implants were fabricated with fused filament fabrication(FFF)three-dimensional(3D)printing,and clinical outcomes demonstrated better bone repair efficacy and long-term stability of porous PEEK implants compared to solid PEEK implants.Moreover,good osteointegration performance of 3D-printed porous PEEK implants was observed,with an average bone volume fraction>40%three months after implantation.In conclusion,3D-printed porous PEEK implants have great potential for clinical application,with validated implantation safety and good osseointegration.
基金appreciate financial support from the National Key R&D Program of China(No.2022YFA1104600)2022 Lingang Laboratory“Seeking Outstanding Youth Program”Open Project(No.LGQS-202206-04)+3 种基金Shanghai Ninth People’s Hospital–Shanghai Jiao Tong University School of Medicine–Shanghai University of Science and Technology Cross-funded Collaborative Program(No.JYJC202233)the National Natural Science Foundation of China(No.82372377)Biomaterials and Regenerative Medicine Institute Cooperative Research Project by Shanghai Jiao Tong University School of Medicine(No.2022LHBO8),Shanghai Key Laboratory of Orthopaedic Implants,Department of Orthopaedics by Shanghai Ninth People’s Hospital–Shanghai Jiao Tong University School of Medicine(No.KFKT202206),the Key R&D Program of Jiangsu Province Social Development Project(No.BE2022708)the Project of Shanghai Science and Technology Commission(No.22015820100).
文摘In the current settings of osteosarcoma research and drug screening,in vitro three-dimensional(3D)models,which overcome the limitations of traditional models,are favored.In in vitro 3D models,tumor microenvironment simulation,particularly of the mechanical microenvironment,is crucial for estimating the biological effects of a tumor.However,current in vitro osteosarcoma model construction is often limited to a single mechanical signal,which fails to simulate the diversity of osteosarcoma mechanical stimuli.In this study,we utilized embedded bioprinting technology and the multiple response properties of calcium ions in soft and hard stiffness systems with osteosarcoma cell biological functions to construct an integrated gradient biomechanical signal-tailored osteosarcoma model(IGBSTOM).We achieved this by printing a fibrinogen bioink containing calcium ions and osteosarcoma tumor spheroids within an extracellular matrix composed of methacryloylated alginate,methacryloylated gelatin,thrombin,and transglutaminase,which is rich in polysaccharides and proteins and exhibits self-healing properties.Our in vitro and in vivo studies showed that the IGBSTOM enhanced tumor stemness,proliferation,and migration,and successfully reproduced the nest-like structure of tumors,providing an in vitro research platform that is more similar to the natural tumor than the existing models.This study proposes a novel IGBSTOM construction and provides a new strategy for the clinical understanding of tumor development,drug screening,and exploration of drug resistance and metastasis mechanisms.
文摘Reservoir characterization refers to the process of creating a comprehensive model that characterizes the reservoir based on its ability to store and produce hydrocarbons.This includes analyzing reservoir fluid behavior under various conditions and identifying optimal production techniques to maximize hydrocarbon recovery.For this,a holistic understanding is required that integrates data from geophysics,geostatistics,petrophysics,geology,and reservoir engineering.
基金supported by the National Natural Science Foundation of China(82271629)the Central Funds Guiding the Local Science and Technology Development of Shenzhen(2021Szvup024)+1 种基金the Jiangsu Provincial Key Research and Development Program(BE2021664)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0312)。
文摘The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cell types and heterogeneity in the respiratory system,the relevant specific spatial localization and cellular interactions have not been clearly elucidated.Spatial transcriptomics(ST)has filled this gap and has been widely used in respiratory studies.This review focuses on the latest iterative technology of ST in recent years,summarizing how ST can be applied to the physiological and pathological processes of the respiratory system,with emphasis on the lungs.Finally,the current challenges and potential development directions are proposed,including high-throughput full-length transcriptome,integration of multi-omics,temporal and spatial omics,bioinformatics analysis,etc.These viewpoints are expected to advance the study of systematic mechanisms,including respiratory studies.
文摘In this work,we studied the electronic and magnetic properties of the double perovskite Sr_(2)CrMoO_(6)using ab initio calculations with generalized gradient approximation(GGA)and Monte Carlo(MC)simulations.The compound has two magnetic sublattices:one occupied by Mo5+with spin(S=1/2)and the other by Cr^(3+)with spin(σ=3/2)The results showed halfmetallic behavior with a total magnetic moment of 2.0μB.Using Monte Carlo simulations,we investigated the phase transitions and observed interesting phenomena such as a critical endpoint and both second-order and first-order phase transitions.Additionally,the results revealed compensation points for specific values of the crystal field.
基金supported by the National Key R&D Program of China(Grant No.2019YFB1311200).
文摘Soft grippers are favored for handling delicate objects due to their compliance but often have lower load capacities compared to rigid ones.Variable Stiffness Module(VSM)offer a solution,balancing flexibility and load capacity,for which particle jamming is an effective technology for stiffness-tunable robots requiring safe interaction and load capacity.Specific applica-tions,such as rescue scenarios,require quantitative analysis to optimize VSM design parameters,which previous analytical models cannot effectively handle.To address this,a Grey-box model is proposed to analyze the mechanical response of the particle-jamming-based VSM by combining a White-box approach based on the virtual work principle with a Black-box approach that uses a shallow neural network method.The Grey-box model demonstrates a high level of accuracy in predict-ing the VSM force-height mechanical response curves,with errors below 15%in almost 90%of the cases and a maximum error of less than 25%.The model is used to optimize VSM design parameters,particularly those unexplored combinations.Our results from the load capacity and force distribution comparison tests indicate that the VSM,optimized through our methods,quantitatively meets the practical engineering requirements.
基金supported by the National Natural Science Foundation of China(Nos.51922004,51874037)State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2019Z-14,2020Z-04,2021Z-03)+7 种基金Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z,06500236)Interdisciplinary Research Project for Young Teachers of USTB,China(Fundamental Research Funds for the Central Universities,FRF-IDRY-20-023)Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing,China(No.2022BH001)the China Postdoctoral Science Foundation(No.2021M700377)the Beijing Natural Science Foundation,China(No.2212035)the support from the European Commission via the H2020 MSCA RISE BAMOS program(No.734156)Innovate UK via Newton Fund(No.102872)Engineering and Physical Science Research Council(EPSRC)via DTP case programme(No.EP/T517793/1)。
基金supported by the Chinese Academy of Science Project KZCX2-EW-120National basic Research Program of China (973 Program, 2012CB821901)+2 种基金the National Natural Science Foundation of China to J. W.a grant from the University Research FoundationOther funding from the University of Pennsylvania to H. W. P. during field research
文摘Compaction rates of sediments or volcaniclastic material are needed to reconstruct original thickness of a bed, which in turn is required to reconstruct subsidence rates, sea-level rise, or in the case of volcanielastic, the location or direction of the eruption site. The knowledge of compaction rates can also aid in the reconstruction of deformed fossils. The known shape of deformed fossils can allow the determination of the compaction they experienced. Here we report the compaction rate in an early Permian volcanic tuff from Wuda, Inner Mongolia, determined from the deformation of standing tree fern stems of known anatomy. The compaction rate has been found to be 0.56 in this case, indicating that 44% of original thickness remains.
基金This research has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.724480).
文摘Ultrafast laser inscription(ULI)inside semiconductors offers new perspectives for 3D monolithic structures to be fabricated and new functionalities to be added in electronic and photonic microdevices.However,important challenges remain because of nonlinear effects such as strong plasma generation that distort the energy delivery at the focal point when exposing these materials to intense infrared light.Up to now,the successful technological demonstrations have primarily concentrated on silicon(Si).In this paper,we target at another important semiconductor:gallium arsenide(GaAs).With nonlinearities higher than those of Si,3D-machining of GaAs with femtosecond pulses becomes even harder.However,we show that the difficulty can be circumvented by burst-mode irradiation.We generate and apply trains of pulses at terahertz repetition rates for efficient pulse-to-pulse accumulation of laser-induced free carriers in the focal region,while avoiding an overdose of prefocal excitations.The superior performance of burst-mode irradiation is confirmed by a comparative study conducted with infrared luminescence microscopy.The results indicate a successful reduction of the plasma density in the prefocal region so that higher pulse energy reaches the focal spot.The same method is applied to identify optimum irradiation conditions considering particular cases such as asymmetric pulse trains and aberrated beams.With 64-pulse trains,we successfully manage to cross the writing threshold providing a solution for ULI inside GaAs.The application potential is finally illustrated with a stealth dicing demonstration by taking benefit of the burst mode.The irradiation method opens wide possibilities for 3D structuring inside GaAs by ULI.
文摘AIM: To determine the cut-off values of body mass index(BMI) and waist circumference to predict hypertension in adults in north India.METHODS: A community based cross-sectional study was conducted in 801 subjects in Kanpur, aged 20 years and above, using multistage stratified random sampling technique. A pre-tested structured question-naire was used to elicit the required information from the study participants and the diagnostic criteria for hypertension were taken according to the Seventh Joint National Committee Report on Hypertension(JNC-7). Receiver operating characteristic(ROC) analysis was used to estimate the cut-off values of BMI and waist circumference to predict hypertension.RESULTS: The ROC analysis revealed that BMI is a good predictor of hypertension for both men(area under the ROC curve 0.714) and women(area under the ROC curve 0.821). The cut-off values of BMI for predicting hypertension were identified as ≥ 24.5 kg/m2 in men and ≥ 24.9 kg/m2 in women. Similarly, the ROC analysis for waist circumference showed that it is a good predictor of hypertension both for men(area under the ROC curve 0.784) and women(area under the ROC curve 0.815). The cut-offs for waist circumference for predicting hypertension were estimated as ≥ 83 cm for men and ≥ 78 cm for women. Adults with high BMI or high waist circumference had a higher prevalence of hypertension, respectively.CONCLUSION: Simple anthropometric measurements such as BMI and waist circumference can be used for screening people at increased risk of hypertension in order to refer them for more careful and early diagnostic evaluation. Policies and programs are required for primary and secondary prevention of hypertension.