In light of the increasing recognition of the necessity to evaluate and mitigate the environmental impact of human activities, the aim of this study is to assess the greenhouse gases emitted in 2022 by the Kossodo the...In light of the increasing recognition of the necessity to evaluate and mitigate the environmental impact of human activities, the aim of this study is to assess the greenhouse gases emitted in 2022 by the Kossodo thermal power plant as a consequence of its electricity production. The specific objective was to identify the emission sources and quantify the gases generated, with the purpose of proposing effective solutions for reducing the plant’s ecological footprint. In order to achieve the objectives set out in the study, the Bilan Carbone® method was employed. Following an analysis of the plant’s activities, seven emission items were identified as requiring further investigation. The data was gathered from the plant’s activity reports, along with measurements and questionnaires distributed to employees. The data collected was subjected to processing in order to produce the sought activity data. The Bilan Carbone® V7.1 spreadsheet was employed to convert the activity data into equivalent quantities of CO2. The full assessment indicates that the majority of the power plant’s emissions come from the combustion of HFO and DDO, accounting for 96.11% of the Kossodo power plant’s total GHG emissions in 2022. The plant produced 280,585,676 kilowatt-hours (kWh), resulting in emissions of 218,492.785 ± 10,924.639 tCO2e, which yielded an emission factor of 0.78 kgCO2e/kWh for the year 2022. In order to reduce this rate, recommendations for improved energy efficiency have been issued to management and all staff.展开更多
This study on physical and physicochemical characteristics of household solid waste (HSW) in the city of Ouagadougou by using MODECOM, “Method of Characterization of Household waste” was done fifteen (15) years afte...This study on physical and physicochemical characteristics of household solid waste (HSW) in the city of Ouagadougou by using MODECOM, “Method of Characterization of Household waste” was done fifteen (15) years after the first study. Special attention has been paid to waste sampled and also to estimate energy content, namely the higher heating value (HHV) and the lower heating value (LHV). As a general tendency, the results showed a sensitive evolution in the physical parameters of waste (composition by size and composition by category) and also in the physicochemical parameters (moisture content and energy content). The results of HSW composition study showed that regardless the seasons, fermentable fraction is dominant (39% in the rainy season and 20% in the dry season) followed by plastics (18% in the rainy season and 20% in the dry season). The moisture content is measured to be 56.69% and 37.69% respectively in the rainy season and dry season. The results analysis of the potential of recovery showed that the organic recovery is more important (60% in the rainy season and 55% in the dry season) than the matter recovery (43% in the rainy season and 46% in the dry season). These results highlight the need for organic recovery and matter recovery of HSW in the city of Ouagadougou. The results from the analysis of the energy content showed that the HHV is estimated to be 17.94 MJ/kg in the rainy season and 17.96 MJ/kg in the dry season. The LHV is calculated to be 6.38 MJ/kg in the rainy season and 10.27 MJ/kg in the dry season. These results suggest that incineration as treatment of HSW in the city of Ouagadougou is not economically an appropriate option.展开更多
In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders incl...In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders including cardio-respiratory pathologies, acute bronchopneumonia, lung cancer, etc. In sub-Saharan Africa countries, particularly Burkina Faso, there is very few similar research. In the present work, the pollution levels of airborne particle in the city of Ouagadougou have been assessed through two campaigns of in situ measurements of suspended particulate matter concentrations. These measurements which have concerned PM<sub>1</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> were performed using a portable device (AEROCET531S) at nine sites in 2018 and at ten sites in 2019. These sites are located on roadside, administrative services, secondary education establishments and outlying districts. The results show that: 1) the PM1 concentrations values presented no significant variation between days, seasons or sampling sites;2) the 24-hour PM<sub>2.5</sub> concentrations often exceeding WHO recommended concentrations and, 3) the 24-hour PM<sub>10</sub> concentrations exceed WHO recommended concentrations regardless of the season or the sampling site. In indeed, the average 24-hour concentrations are 20 ± 4, 87 ± 16 and 951 ± 266 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup> for the PM1, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. They are 17 ± 3, 29 ± 5 and 158 ± 43 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2018 dry season and, 12 ± 1, 22 ± 9 and 187 ± 67 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2019 rainy season.展开更多
The past literature on the use of vegetable oils as fuel in diesel engine revealed that utilizing vegetable oil fuels in diesel engines may require property changes in the oil or perhaps, some minor engine modificatio...The past literature on the use of vegetable oils as fuel in diesel engine revealed that utilizing vegetable oil fuels in diesel engines may require property changes in the oil or perhaps, some minor engine modifications or operating changes. This study was conducted to search for the effect of atmospheric oxygen on the puffing and bursting phenomena that occur during vegetable oils droplet vaporization process in their use as fuel in diesel engine. The fiber-suspended droplet technique was used, and the normalized square droplet diameter as well as the temperature evolution vicinity the droplet was analyzed. The results show that puffing and bursting phenomena highly depend on oxygen. In presence of atmospheric oxygen, there is an increase of the puffing and bursting intensity and therefore the evaporation rate of the vegetable oil droplets, but in an inert environment or when the environment is oxygen-depleted puffing and bursting phenomena disappearing and make place of a series of explosions with lower magnitude. The lack of oxygen reduces the thermal degradation, polymerization and oxidation reactions and consequently the vaporization rate of vegetable oils droplets;and could therefore lead to the formation of deposits in the form of polymers. This is unsuitable for their use as a fuel in diesel engines. It can also be concluded that atmospheric oxygen has some positive effects on engine performance and emissions when operating with vegetable oil. These results help to address the challenge for the use of alternative fuels such as non-edible vegetable oils.展开更多
A single adsorption isothermal study was performed over HY and BEA zeolites in order to determine their adsorption capacities for phenol, ortho-nitrophenol and para-nitrophenol. The experiments were realized in batch ...A single adsorption isothermal study was performed over HY and BEA zeolites in order to determine their adsorption capacities for phenol, ortho-nitrophenol and para-nitrophenol. The experiments were realized in batch reactor and the isotherms were modelized by the Fowler-Guggenheim equation. During the adsorption process weak zeolite-sorbate interactions and more significant sorbate-sorbate attractions were identified. The adsorption was not linked to the molecular size of the sorbates and a strong correlation was established between the adsorption compound was the best adsorbed. The removal performances capacities and the dipole moments of the sorbates. The most polar of the zeolites depended on their hydrophobicity.展开更多
The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the prop...The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.展开更多
In this paper, we study the influence ofeco materials for roof insulation and fiber-reinforced mortar coatings on cooling loads of a home in dry tropical climate. The walls of the house are made of cinderblock or late...In this paper, we study the influence ofeco materials for roof insulation and fiber-reinforced mortar coatings on cooling loads of a home in dry tropical climate. The walls of the house are made of cinderblock or laterite and the insulating material of a roof panel is made with lime (24%), cement (6%), water (50%) of vegetable fibers hibiscus sabdariffa (16%), tree widespread in Burkina Faso and sugar cane bagasse (4%). This panel roof insulation and the fiber-reinforced mortar were characterized at the Laboratory of Physics and Chemistry of the environment by the hot plate method. The building is modeled in TRNSYS using climate data from the city of Ouagadougou. The results obtained show that in the warmer months of the year, that is to say in March and April, the relative differences between heat gains the configurations "breeze block-coating mortar and roof not insulated" and "laterite- fiber-reinforced mortar coating and insulated roof' vary between 15.6% and 16.8%. The configuration "laterite-fiber-reinforced mortar coating and insulated roof allows a reduction of annual heat gains of 15.5% compared to the configuration "breeze block-coating mortar and roof not insulated".展开更多
In this work, a model of convective drying of mango slices was developed and validated by experiments. This model was established by considering slices shrinkage in the energy and the mass balances during the thin lay...In this work, a model of convective drying of mango slices was developed and validated by experiments. This model was established by considering slices shrinkage in the energy and the mass balances during the thin layer drying. The drying kinetics and the temperature curves of the product were simulated using the model at various drying temperatures. The simulated curves were then compared to the experimental curves obtained using a convective dryer controlled in temperature and moisture. The results showed that the drying curves were suitably fitted by the thin layer drying model with a correlation coefficient r<sup>2</sup> = 0.997. Thus, taking shrinkage into account, it is possible to predict more effectively the thin layer drying kinetics of mango slices. This study therefore contributed to the mango drying modelling and to the mango dryer setting.展开更多
This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can r...This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications.展开更多
Sustainable building design in dry tropical areas recommends reducing exposure of buildings to solar radiation and/or designing efficient enclosures with satisfactory thermal inertia.We propose in this paper a study o...Sustainable building design in dry tropical areas recommends reducing exposure of buildings to solar radiation and/or designing efficient enclosures with satisfactory thermal inertia.We propose in this paper a study of the influence of the infiltration rate in the building and the coefficient of thermal transfer by convection of the walls, on the thermal comfort using TRNSYS software. All the models carried out were validated by recognized scientific criteria, namely correlation (R) and determination (R2) coefficients on the one hand and NBME and CVRMSE coefficients defined by ASHARE, 2002 on the other hand. The results obtained indicate that the modulation of the air infiltration rate allows the simulations on TRNSYS to be compared to in-situ measurements, with an annual average relative difference of 2.86% on the temperature difference. Furthermore, depending on the parameterization of the heat transfer coefficients by convection of the internal and external walls of walls used in the STD, the average annual difference can be reduced by 1% to 4% between the predictions and the measurements.展开更多
This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 ...This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 keV, the intrinsic SEE yields measured at very low injection dose are 0.54, 0.29 and 0.35, respectively for lead silica, Suprasil and Infrasil silica glass. During the first e-beam irradiation at a high injection current density, the SEE yields of lead silica and Suprasil increase continuously and slowly from their initial values to a steady state. At the steady state, the SEE yields of lead silica and Suprasil are 0.94 and 0.93, respectively. In Infrasil, several charging and discharging processes are observed during the experiment. This shows that Infrasil does not reach its steady state. Two hours later, all samples are irradiated again in the same place as the first irradiation at a low current density and low dose. The SEE yields of lead silica, Suprasil and Infrasil are 0.69, 0.76 and 0.55, respectively. Twenty hours later, the values are 0.62, 0.64 and 0.33, respectively, for lead silica, Suprasil and Infrasil. These results show that Infrasil has poor charging stability. Comparatively, the charging stability of lead silica is better, and Suprasil has the best characteristics.展开更多
In a context of sustainable development and use of eco-materials,it was examined the possibility of using sewage sludge from the water treatment plant of Ziga as an inorganic support to achieve sealing barriers that c...In a context of sustainable development and use of eco-materials,it was examined the possibility of using sewage sludge from the water treatment plant of Ziga as an inorganic support to achieve sealing barriers that can withstand high stresses to overcome any weaknesses of the geological barrier(called passive barrier).The station Ziga that potabilises the water from the river Nakamb6 is located 45 km north east of Ouagadougou.Some experiments on the rheology of sludge from Ziga as well as the filtration of the mixture Ziga's sludge and clays from Nouna,Zorgho and Ticare,three regions of Burkina Faso,were conducted.These studies demonstrated the complex hydro-mechanical behavior of Ziga's slurries:Newtonian fluid thixotropic threshold for solids contents less than 16.5 wt%and non-Newtonian for higher values.Sludge from the water treatment station Ziga have a hydraulic conductivity of 10^-8 m/s.The results are below regulatory requirements.However,the permeability can be reduced to achieve the value of 10^-9 m/s in particular by adding the clay from Zorgho or Nouna to mixtures of Ziga's sludge and neutral leachate,typically mineral water.Beside neutral leachate,two types of leachate were used.One type is composed of acid leachate and the other type is basic.It was shown that the limewater solutions cause deterioration of the seal probably due to the presence of hydroxide ions.展开更多
Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun....Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.展开更多
The present study carried out the α-endosulfan removal from water by adsorption over natural clays from the western region of Burkina Faso. The adsorption experiments were performed over raw clay samples at room temp...The present study carried out the α-endosulfan removal from water by adsorption over natural clays from the western region of Burkina Faso. The adsorption experiments were performed over raw clay samples at room temperature in batch reactor and the obtained adsorption isotherms were well fitted by Fowler-Guggenheim model. It was pointed out for all samples that α-endosulfan was physisorbed in the interlayer space of the clay samples. The maximal adsorption capacities were respectively about 9.12, 6.98 and 4.13 mg/g for KO2, KO1 and KW1 samples. The differences in terms of adsorption capacity for the three samples were due to the presence of illite in the samples KO2 and KO1 when the KW1 sample contained essentially kaolinite in its structure. When the interlayer space was large enough as for samples with illite a greater amount of α-endosulfan molecules were adsorbed. It was also shown that the samples with the higher surface area were the most efficient for the removal of α-endosulfan molecules from water. Moreover, this study exhibited that the α-endosulfan adsorption depended on the crystallites size;the samples presenting largest crystallites had the greatest adsorption capacities.展开更多
The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and...The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.展开更多
This research work consisted in making a comparative study of the thermal comfort of four materials types used in the construction of a building.A simulation of the building with the various materials on the KoZiBu so...This research work consisted in making a comparative study of the thermal comfort of four materials types used in the construction of a building.A simulation of the building with the various materials on the KoZiBu software in reference and optimized situation was carried out.A study on the sensitive and air-conditioning loads as well as the curves of temperatures on a building of type F2 in situation of reference and in optimized situation was made on the one hand and the other hand a study on the same building without air-conditioning in reference and optimized situation.Finally,the analysis of the results favorizes the choice of the material having the best thermal comfort.The conclusions of these works show that the material that can give the best comfort and the most economics in terms of energy is the adobe which offers temperatures(301.40K or 28.40°C)and a good indoor thermal environment compared to BLT(blocks of cut laterite),BTC(blocks of compressed earth)and cinder block.Dwellings built with earthen materials offer a better indoor thermal environment than those built with modern construction materials,which are used more and more in the construction of houses in Burkina Faso.展开更多
Hydric properties evolution during drying differs from one product to another and has been the subject of various studies due to its crucial importance in modeling the drying process. The variation of these parameters...Hydric properties evolution during drying differs from one product to another and has been the subject of various studies due to its crucial importance in modeling the drying process. The variation of these parameters in the solid matrix and in time during the drying of Spirulina platensis has not known an advanced understanding. The objective of this study was to evaluate the evolution of the water content profile, the mass flow, the concentration gradient and the diffusion coefficient during the drying of Spirulina platensis taking into account the shrinkage. Modeling and experimental analysis (at 50°C and HR = 6%) by the cutting method a cylinder 20 mm in diameter and 40 mm thick were carried. The water content profiles of two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kgw/kgdb and 3.12 kgw/kgdb were determined. These profiles have been adjusted by a polynomial function. Identical water behavior is observed regardless of the origin of the samples. Water distribution is heterogeneous. Mass flow and concentration gradient are greater at the edge than inside the product. The water transport coefficient, ranging from 1.70 × 10?10 to 94 × 10?10 m2/s, is determined from a linear approach.展开更多
The study of air pollution is recent in West Africa. There is a lack of data on air pollution. However, some studies conducted in West Africa show that air quality is a concern. Population growth and massive vehicles ...The study of air pollution is recent in West Africa. There is a lack of data on air pollution. However, some studies conducted in West Africa show that air quality is a concern. Population growth and massive vehicles imports are contributing to the deterioration of this air quality. In this work, we present the modelling of desert aerosols using a CTM Polair3D-SIREAM. The objective is to evaluate the ability of Polair3D-SIREAM to reproduce observations of PM10 and Aerosol Optical Thicknesses (AOT). A simulation with Polair3D-SIREAM was carried out in West Africa, focused on Ouagadougou (Burkina Faso) for 2007. The model of Marticorena and Bergametti (1995), MB95, was used to estimate desert aerosols emissions. The total emission of dust modelled is 52.2 Tg. For the evaluation of PM10, the simulated averages remained within the same orders of magnitude as the observed averages. Correlations are low in all the observation sites. The other indicators are similar to those found by Schmechtig et al. (2011). Performance criteria of Boylan and Russel (2006) are met for the observation sites of Ouagadougou and Ilorin (Nigeria). For the AOTs, the correlations are significantly improved, in particular, at the sites of Ouagadougou and Ilorin. Performance criteria of Boylan are met for all observation sites. However, the performance goals are only achieved for Ouagadougou and Ilorin.展开更多
The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms fr...The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kg w /kg dm to 3.12 kg w /kg dm were characterized. A novel procedure has been developed to determine the water content profiles inside samples during isothermal drying. At both temperatures, experimental results underlined that the physical properties of Spirulina are not sensitive to the geographical origin, Burkina-Faso or France. To keep Spirulina at an water activity below 0.6 in order to preserve it from micro-organisms development, sorption isotherm curves show that a sufficient requirement is to lower the water content until an upper limit of w = 0.075 db. The evolution of water transport coefficient as a function of water content highlights a monotonous exponential dependence with a transport coefficient ranging from 1.70 × 10–10 to 94 × 10–10 m2/s. The contribution of solid phase shrinkage to the transport of water is negligible for the last drying steps.展开更多
文摘In light of the increasing recognition of the necessity to evaluate and mitigate the environmental impact of human activities, the aim of this study is to assess the greenhouse gases emitted in 2022 by the Kossodo thermal power plant as a consequence of its electricity production. The specific objective was to identify the emission sources and quantify the gases generated, with the purpose of proposing effective solutions for reducing the plant’s ecological footprint. In order to achieve the objectives set out in the study, the Bilan Carbone® method was employed. Following an analysis of the plant’s activities, seven emission items were identified as requiring further investigation. The data was gathered from the plant’s activity reports, along with measurements and questionnaires distributed to employees. The data collected was subjected to processing in order to produce the sought activity data. The Bilan Carbone® V7.1 spreadsheet was employed to convert the activity data into equivalent quantities of CO2. The full assessment indicates that the majority of the power plant’s emissions come from the combustion of HFO and DDO, accounting for 96.11% of the Kossodo power plant’s total GHG emissions in 2022. The plant produced 280,585,676 kilowatt-hours (kWh), resulting in emissions of 218,492.785 ± 10,924.639 tCO2e, which yielded an emission factor of 0.78 kgCO2e/kWh for the year 2022. In order to reduce this rate, recommendations for improved energy efficiency have been issued to management and all staff.
文摘This study on physical and physicochemical characteristics of household solid waste (HSW) in the city of Ouagadougou by using MODECOM, “Method of Characterization of Household waste” was done fifteen (15) years after the first study. Special attention has been paid to waste sampled and also to estimate energy content, namely the higher heating value (HHV) and the lower heating value (LHV). As a general tendency, the results showed a sensitive evolution in the physical parameters of waste (composition by size and composition by category) and also in the physicochemical parameters (moisture content and energy content). The results of HSW composition study showed that regardless the seasons, fermentable fraction is dominant (39% in the rainy season and 20% in the dry season) followed by plastics (18% in the rainy season and 20% in the dry season). The moisture content is measured to be 56.69% and 37.69% respectively in the rainy season and dry season. The results analysis of the potential of recovery showed that the organic recovery is more important (60% in the rainy season and 55% in the dry season) than the matter recovery (43% in the rainy season and 46% in the dry season). These results highlight the need for organic recovery and matter recovery of HSW in the city of Ouagadougou. The results from the analysis of the energy content showed that the HHV is estimated to be 17.94 MJ/kg in the rainy season and 17.96 MJ/kg in the dry season. The LHV is calculated to be 6.38 MJ/kg in the rainy season and 10.27 MJ/kg in the dry season. These results suggest that incineration as treatment of HSW in the city of Ouagadougou is not economically an appropriate option.
文摘In Western countries, research works on air quality have reinforced in recent years because of the links between the level of particulate pollution in numerous cities and the appearing of various health disorders including cardio-respiratory pathologies, acute bronchopneumonia, lung cancer, etc. In sub-Saharan Africa countries, particularly Burkina Faso, there is very few similar research. In the present work, the pollution levels of airborne particle in the city of Ouagadougou have been assessed through two campaigns of in situ measurements of suspended particulate matter concentrations. These measurements which have concerned PM<sub>1</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> were performed using a portable device (AEROCET531S) at nine sites in 2018 and at ten sites in 2019. These sites are located on roadside, administrative services, secondary education establishments and outlying districts. The results show that: 1) the PM1 concentrations values presented no significant variation between days, seasons or sampling sites;2) the 24-hour PM<sub>2.5</sub> concentrations often exceeding WHO recommended concentrations and, 3) the 24-hour PM<sub>10</sub> concentrations exceed WHO recommended concentrations regardless of the season or the sampling site. In indeed, the average 24-hour concentrations are 20 ± 4, 87 ± 16 and 951 ± 266 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup> for the PM1, PM<sub>2.5</sub> and PM<sub>10</sub>, respectively. They are 17 ± 3, 29 ± 5 and 158 ± 43 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2018 dry season and, 12 ± 1, 22 ± 9 and 187 ± 67 μg<span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>3</sup>, respectively, in 2019 rainy season.
文摘The past literature on the use of vegetable oils as fuel in diesel engine revealed that utilizing vegetable oil fuels in diesel engines may require property changes in the oil or perhaps, some minor engine modifications or operating changes. This study was conducted to search for the effect of atmospheric oxygen on the puffing and bursting phenomena that occur during vegetable oils droplet vaporization process in their use as fuel in diesel engine. The fiber-suspended droplet technique was used, and the normalized square droplet diameter as well as the temperature evolution vicinity the droplet was analyzed. The results show that puffing and bursting phenomena highly depend on oxygen. In presence of atmospheric oxygen, there is an increase of the puffing and bursting intensity and therefore the evaporation rate of the vegetable oil droplets, but in an inert environment or when the environment is oxygen-depleted puffing and bursting phenomena disappearing and make place of a series of explosions with lower magnitude. The lack of oxygen reduces the thermal degradation, polymerization and oxidation reactions and consequently the vaporization rate of vegetable oils droplets;and could therefore lead to the formation of deposits in the form of polymers. This is unsuitable for their use as a fuel in diesel engines. It can also be concluded that atmospheric oxygen has some positive effects on engine performance and emissions when operating with vegetable oil. These results help to address the challenge for the use of alternative fuels such as non-edible vegetable oils.
文摘A single adsorption isothermal study was performed over HY and BEA zeolites in order to determine their adsorption capacities for phenol, ortho-nitrophenol and para-nitrophenol. The experiments were realized in batch reactor and the isotherms were modelized by the Fowler-Guggenheim equation. During the adsorption process weak zeolite-sorbate interactions and more significant sorbate-sorbate attractions were identified. The adsorption was not linked to the molecular size of the sorbates and a strong correlation was established between the adsorption compound was the best adsorbed. The removal performances capacities and the dipole moments of the sorbates. The most polar of the zeolites depended on their hydrophobicity.
文摘The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.
文摘In this paper, we study the influence ofeco materials for roof insulation and fiber-reinforced mortar coatings on cooling loads of a home in dry tropical climate. The walls of the house are made of cinderblock or laterite and the insulating material of a roof panel is made with lime (24%), cement (6%), water (50%) of vegetable fibers hibiscus sabdariffa (16%), tree widespread in Burkina Faso and sugar cane bagasse (4%). This panel roof insulation and the fiber-reinforced mortar were characterized at the Laboratory of Physics and Chemistry of the environment by the hot plate method. The building is modeled in TRNSYS using climate data from the city of Ouagadougou. The results obtained show that in the warmer months of the year, that is to say in March and April, the relative differences between heat gains the configurations "breeze block-coating mortar and roof not insulated" and "laterite- fiber-reinforced mortar coating and insulated roof' vary between 15.6% and 16.8%. The configuration "laterite-fiber-reinforced mortar coating and insulated roof allows a reduction of annual heat gains of 15.5% compared to the configuration "breeze block-coating mortar and roof not insulated".
文摘In this work, a model of convective drying of mango slices was developed and validated by experiments. This model was established by considering slices shrinkage in the energy and the mass balances during the thin layer drying. The drying kinetics and the temperature curves of the product were simulated using the model at various drying temperatures. The simulated curves were then compared to the experimental curves obtained using a convective dryer controlled in temperature and moisture. The results showed that the drying curves were suitably fitted by the thin layer drying model with a correlation coefficient r<sup>2</sup> = 0.997. Thus, taking shrinkage into account, it is possible to predict more effectively the thin layer drying kinetics of mango slices. This study therefore contributed to the mango drying modelling and to the mango dryer setting.
文摘This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications.
文摘Sustainable building design in dry tropical areas recommends reducing exposure of buildings to solar radiation and/or designing efficient enclosures with satisfactory thermal inertia.We propose in this paper a study of the influence of the infiltration rate in the building and the coefficient of thermal transfer by convection of the walls, on the thermal comfort using TRNSYS software. All the models carried out were validated by recognized scientific criteria, namely correlation (R) and determination (R2) coefficients on the one hand and NBME and CVRMSE coefficients defined by ASHARE, 2002 on the other hand. The results obtained indicate that the modulation of the air infiltration rate allows the simulations on TRNSYS to be compared to in-situ measurements, with an annual average relative difference of 2.86% on the temperature difference. Furthermore, depending on the parameterization of the heat transfer coefficients by convection of the internal and external walls of walls used in the STD, the average annual difference can be reduced by 1% to 4% between the predictions and the measurements.
基金supported by the European Commission in the framework of the GLAMOROUS contract (ref. IST2000-28366)
文摘This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 keV, the intrinsic SEE yields measured at very low injection dose are 0.54, 0.29 and 0.35, respectively for lead silica, Suprasil and Infrasil silica glass. During the first e-beam irradiation at a high injection current density, the SEE yields of lead silica and Suprasil increase continuously and slowly from their initial values to a steady state. At the steady state, the SEE yields of lead silica and Suprasil are 0.94 and 0.93, respectively. In Infrasil, several charging and discharging processes are observed during the experiment. This shows that Infrasil does not reach its steady state. Two hours later, all samples are irradiated again in the same place as the first irradiation at a low current density and low dose. The SEE yields of lead silica, Suprasil and Infrasil are 0.69, 0.76 and 0.55, respectively. Twenty hours later, the values are 0.62, 0.64 and 0.33, respectively, for lead silica, Suprasil and Infrasil. These results show that Infrasil has poor charging stability. Comparatively, the charging stability of lead silica is better, and Suprasil has the best characteristics.
文摘In a context of sustainable development and use of eco-materials,it was examined the possibility of using sewage sludge from the water treatment plant of Ziga as an inorganic support to achieve sealing barriers that can withstand high stresses to overcome any weaknesses of the geological barrier(called passive barrier).The station Ziga that potabilises the water from the river Nakamb6 is located 45 km north east of Ouagadougou.Some experiments on the rheology of sludge from Ziga as well as the filtration of the mixture Ziga's sludge and clays from Nouna,Zorgho and Ticare,three regions of Burkina Faso,were conducted.These studies demonstrated the complex hydro-mechanical behavior of Ziga's slurries:Newtonian fluid thixotropic threshold for solids contents less than 16.5 wt%and non-Newtonian for higher values.Sludge from the water treatment station Ziga have a hydraulic conductivity of 10^-8 m/s.The results are below regulatory requirements.However,the permeability can be reduced to achieve the value of 10^-9 m/s in particular by adding the clay from Zorgho or Nouna to mixtures of Ziga's sludge and neutral leachate,typically mineral water.Beside neutral leachate,two types of leachate were used.One type is composed of acid leachate and the other type is basic.It was shown that the limewater solutions cause deterioration of the seal probably due to the presence of hydroxide ions.
文摘Solar cookers are a good option in developing countries with high solar potential for environmentally friendly cooking and reduced pressure on forests. However, they are still affected by the intermittency of the sun. In order to overcome this problem, in this work, a box type solar cooker integrated Jatropha oil as a heat storage material is fabricated and experimented with. The design was examined with a maximum stagnation temperature of 157.7°C. The recorded cooking power vanished between 78.4 and 103.6 W, while thermal efficiency varied from 41.26% to 58.78%. The energy transfer cycle test, including charge and discharge revealed that 91.18% of the heat lost through the cooker could be recovered by the heat storage unit and a large amount is restored to the system during cloudiness or a temperature perturbation.
文摘The present study carried out the α-endosulfan removal from water by adsorption over natural clays from the western region of Burkina Faso. The adsorption experiments were performed over raw clay samples at room temperature in batch reactor and the obtained adsorption isotherms were well fitted by Fowler-Guggenheim model. It was pointed out for all samples that α-endosulfan was physisorbed in the interlayer space of the clay samples. The maximal adsorption capacities were respectively about 9.12, 6.98 and 4.13 mg/g for KO2, KO1 and KW1 samples. The differences in terms of adsorption capacity for the three samples were due to the presence of illite in the samples KO2 and KO1 when the KW1 sample contained essentially kaolinite in its structure. When the interlayer space was large enough as for samples with illite a greater amount of α-endosulfan molecules were adsorbed. It was also shown that the samples with the higher surface area were the most efficient for the removal of α-endosulfan molecules from water. Moreover, this study exhibited that the α-endosulfan adsorption depended on the crystallites size;the samples presenting largest crystallites had the greatest adsorption capacities.
文摘The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.
文摘This research work consisted in making a comparative study of the thermal comfort of four materials types used in the construction of a building.A simulation of the building with the various materials on the KoZiBu software in reference and optimized situation was carried out.A study on the sensitive and air-conditioning loads as well as the curves of temperatures on a building of type F2 in situation of reference and in optimized situation was made on the one hand and the other hand a study on the same building without air-conditioning in reference and optimized situation.Finally,the analysis of the results favorizes the choice of the material having the best thermal comfort.The conclusions of these works show that the material that can give the best comfort and the most economics in terms of energy is the adobe which offers temperatures(301.40K or 28.40°C)and a good indoor thermal environment compared to BLT(blocks of cut laterite),BTC(blocks of compressed earth)and cinder block.Dwellings built with earthen materials offer a better indoor thermal environment than those built with modern construction materials,which are used more and more in the construction of houses in Burkina Faso.
文摘Hydric properties evolution during drying differs from one product to another and has been the subject of various studies due to its crucial importance in modeling the drying process. The variation of these parameters in the solid matrix and in time during the drying of Spirulina platensis has not known an advanced understanding. The objective of this study was to evaluate the evolution of the water content profile, the mass flow, the concentration gradient and the diffusion coefficient during the drying of Spirulina platensis taking into account the shrinkage. Modeling and experimental analysis (at 50°C and HR = 6%) by the cutting method a cylinder 20 mm in diameter and 40 mm thick were carried. The water content profiles of two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kgw/kgdb and 3.12 kgw/kgdb were determined. These profiles have been adjusted by a polynomial function. Identical water behavior is observed regardless of the origin of the samples. Water distribution is heterogeneous. Mass flow and concentration gradient are greater at the edge than inside the product. The water transport coefficient, ranging from 1.70 × 10?10 to 94 × 10?10 m2/s, is determined from a linear approach.
文摘The study of air pollution is recent in West Africa. There is a lack of data on air pollution. However, some studies conducted in West Africa show that air quality is a concern. Population growth and massive vehicles imports are contributing to the deterioration of this air quality. In this work, we present the modelling of desert aerosols using a CTM Polair3D-SIREAM. The objective is to evaluate the ability of Polair3D-SIREAM to reproduce observations of PM10 and Aerosol Optical Thicknesses (AOT). A simulation with Polair3D-SIREAM was carried out in West Africa, focused on Ouagadougou (Burkina Faso) for 2007. The model of Marticorena and Bergametti (1995), MB95, was used to estimate desert aerosols emissions. The total emission of dust modelled is 52.2 Tg. For the evaluation of PM10, the simulated averages remained within the same orders of magnitude as the observed averages. Correlations are low in all the observation sites. The other indicators are similar to those found by Schmechtig et al. (2011). Performance criteria of Boylan and Russel (2006) are met for the observation sites of Ouagadougou and Ilorin (Nigeria). For the AOTs, the correlations are significantly improved, in particular, at the sites of Ouagadougou and Ilorin. Performance criteria of Boylan are met for all observation sites. However, the performance goals are only achieved for Ouagadougou and Ilorin.
文摘The sorption behaviour and water transport mechanisms inside Spirulina platensis samples were experimentally analysed during isothermal drying at 25℃ and 50℃. Two different products grown in semi-industrial farms from Burkina Faso and France with initial water contents respectively of the range from 2.73 kg w /kg dm to 3.12 kg w /kg dm were characterized. A novel procedure has been developed to determine the water content profiles inside samples during isothermal drying. At both temperatures, experimental results underlined that the physical properties of Spirulina are not sensitive to the geographical origin, Burkina-Faso or France. To keep Spirulina at an water activity below 0.6 in order to preserve it from micro-organisms development, sorption isotherm curves show that a sufficient requirement is to lower the water content until an upper limit of w = 0.075 db. The evolution of water transport coefficient as a function of water content highlights a monotonous exponential dependence with a transport coefficient ranging from 1.70 × 10–10 to 94 × 10–10 m2/s. The contribution of solid phase shrinkage to the transport of water is negligible for the last drying steps.