A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneo...A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneous plastic strain and creep plastic strain. To take temperature effect into acconnt, a temperature variable was introduced into the instantaneous and creep plastic behavior descriptions and damage characterization, and a linear thermal expansion law was used in constitutive equation formulation. According to the mechanical behavior of rock salt, a specific model was proposed based on the previous model and applied to Avery rock salt, in which the numerical results obtained from our model had a good agreement with the data from experiments.展开更多
In this study,an experimental analysis for determining the fatigue strength of HDPE-100 under cyclic loading is presented.The curve of cumulative fatigue damage versus number of cycles(D-N)was deduced from stiffness d...In this study,an experimental analysis for determining the fatigue strength of HDPE-100 under cyclic loading is presented.The curve of cumulative fatigue damage versus number of cycles(D-N)was deduced from stiffness degradation.Based on the three stage damage trend,the remaining fatigue life is numerically predicted by considering a double term power damage accumulation model.This model is found to be accurate,both in modeling the rapid damage growth in the early life and near the end of the fatigue life.Numerical results illustrate that the proposed model is capable of accurately fitting several different sets of experimental data.展开更多
A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid m...A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.展开更多
Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)w...Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)welding processes are presented.Results showed that the base material along rolling direction exhibited a tensile strength of around 600 MPa and elongation of 11%.For the as welded condition,tensile strength was 260 MPa and elongation percent of 3%.This behavior was attributed to brittleness induced by the microstructural characteristics of the welded alloys,as well as high porosity.Hardness profiles along the welds were obtained and different welded zones were identified.A soft zone(*100 HV0.1) in the heat affected zone for GMAW and MIEA was observed,the minimum hardness corresponding to weld metal(*85 and *96 HV0.1for GMAW and MIEA,respectively).The high dilution between filler and base metal during welding in MIEA allows to the Zn and Cu to flow from the base metal into the weld metal,inducing hardening by solution and subsequent artificial aging.In this regard,the hardness of the weld metal for MIEA increases by 56%,while the tensile strength reaches a value close to 400 MPa.For GMAW,non-favorable hardening effect was observed for the weld metal after solution and artificial aging.展开更多
基金Project supported by the National Natural Science Foundation of China(NSFC) (Nos. 10772190,50979104 and 51009132)
文摘A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneous plastic strain and creep plastic strain. To take temperature effect into acconnt, a temperature variable was introduced into the instantaneous and creep plastic behavior descriptions and damage characterization, and a linear thermal expansion law was used in constitutive equation formulation. According to the mechanical behavior of rock salt, a specific model was proposed based on the previous model and applied to Avery rock salt, in which the numerical results obtained from our model had a good agreement with the data from experiments.
文摘In this study,an experimental analysis for determining the fatigue strength of HDPE-100 under cyclic loading is presented.The curve of cumulative fatigue damage versus number of cycles(D-N)was deduced from stiffness degradation.Based on the three stage damage trend,the remaining fatigue life is numerically predicted by considering a double term power damage accumulation model.This model is found to be accurate,both in modeling the rapid damage growth in the early life and near the end of the fatigue life.Numerical results illustrate that the proposed model is capable of accurately fitting several different sets of experimental data.
基金Project supported by the National Natural Science Foundation of China(Nos.51009132,50920105908,50979104and10972221)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.Z011006)
文摘A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.
文摘Tensile and hardness values for 7075-T651 aluminum alloy in the as welded and post weld heat treated conditions(solubilization and artificial aging-T6),obtained using GMAW and modified indirect electric arc(MIEA)welding processes are presented.Results showed that the base material along rolling direction exhibited a tensile strength of around 600 MPa and elongation of 11%.For the as welded condition,tensile strength was 260 MPa and elongation percent of 3%.This behavior was attributed to brittleness induced by the microstructural characteristics of the welded alloys,as well as high porosity.Hardness profiles along the welds were obtained and different welded zones were identified.A soft zone(*100 HV0.1) in the heat affected zone for GMAW and MIEA was observed,the minimum hardness corresponding to weld metal(*85 and *96 HV0.1for GMAW and MIEA,respectively).The high dilution between filler and base metal during welding in MIEA allows to the Zn and Cu to flow from the base metal into the weld metal,inducing hardening by solution and subsequent artificial aging.In this regard,the hardness of the weld metal for MIEA increases by 56%,while the tensile strength reaches a value close to 400 MPa.For GMAW,non-favorable hardening effect was observed for the weld metal after solution and artificial aging.