期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME 被引量:5
1
作者 Yuejiao WANG Zaiming LIU +1 位作者 Quansheng LIU Yingqiu LI 《Acta Mathematica Scientia》 SCIE CSCD 2019年第5期1345-1362,共18页
We consider a branching random walk in an independent and identically distributed random environment ξ=(ξn) indexed by the time. Let W be the limit of the martingale Wn=∫e^-txZn(dx)/Eξ∫e^-txZn(dx), with Zn denoti... We consider a branching random walk in an independent and identically distributed random environment ξ=(ξn) indexed by the time. Let W be the limit of the martingale Wn=∫e^-txZn(dx)/Eξ∫e^-txZn(dx), with Zn denoting the counting measure of particles of generation n, and Eξ the conditional expectation given the environment ξ. We find necessary and sufficient conditions for the existence of quenched moments and weighted moments of W, when W is non-degenerate. 展开更多
关键词 branching RANDOM WALK RANDOM ENVIRONMENT quenched MOMENTS WEIGHTED MOMENTS
在线阅读 下载PDF
CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME 被引量:7
2
作者 高志强 刘全升 汪和松 《Acta Mathematica Scientia》 SCIE CSCD 2014年第2期501-512,共12页
We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environmen... We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization. 展开更多
关键词 Branching random walk random environment in time central limit theorems
在线阅读 下载PDF
ON GLOBAL MEROMORPHIC SOLUTIONS OF SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS 被引量:1
3
作者 孔荫莹 孙道椿 《Acta Mathematica Scientia》 SCIE CSCD 2013年第2期423-429,共7页
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ... The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations. 展开更多
关键词 Second-order linear differential equations global meromorphic solutions mero-morphic continuation
在线阅读 下载PDF
Optimal Model of Continuous Knowledge Transfer in the Big Data Environment
4
作者 Chuanrong Wu Evgeniya Zapevalova +2 位作者 Yingwu Chen Deming Zeng FrancisLiu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第7期89-107,共19页
With market competition becoming fiercer,enterprises must update their products by constantly assimilating new big data knowledge and private knowledge to maintain their market shares at different time points in the b... With market competition becoming fiercer,enterprises must update their products by constantly assimilating new big data knowledge and private knowledge to maintain their market shares at different time points in the big data environment.Typically,there is mutual influence between each knowledge transfer if the time interval is not too long.It is necessary to study the problem of continuous knowledge transfer in the big data environment.Based on research on one-time knowledge transfer,a model of continuous knowledge transfer is presented,which can consider the interaction between knowledge transfer and determine the optimal knowledge transfer time at different time points in the big data environment.Simulation experiments were performed by adjusting several parameters.The experimental results verified the model’s validity and facilitated conclusions regarding their practical application values.The experimental results can provide more effective decisions for enterprises that must carry out continuous knowledge transfer in the big data environment. 展开更多
关键词 BIG data KNOWLEDGE TRANSFER optimization model simulation EXPERIMENT different time POINTS
在线阅读 下载PDF
随机环境中带移民的上临界分枝过程的Berry-Esseen界 被引量:4
5
作者 王艳清 刘全升 《中国科学:数学》 CSCD 北大核心 2021年第5期751-762,共12页
考虑独立同分布的随机环境中带移民的上临界分枝过程(Zn).应用(Zn)与随机环境中不带移民分枝过程的联系,以及与相应随机游动的联系,在一些适当的矩条件下,本文证明关于log Zn的中心极限定理的Berry-Esseen界.
关键词 分枝过程 随机环境 中心极限定理 BERRY-ESSEEN界
原文传递
随机环境中带移民分枝过程的Cramér大偏差展式 被引量:2
6
作者 王艳清 刘全升 范协铨 《数学学报(中文版)》 CSCD 北大核心 2022年第5期877-890,共14页
本文考虑独立同分布的随机环境中带移民的分枝过程(Z_(n)).基于(Z_(n))的结构,利用测度变换技巧,并借助随机游动的相关结果,我们得到关于logZ_(n)的Cramer型大偏差展式.
关键词 分枝过程 随机环境 Cramer型大偏差展式
原文传递
随机线性自返分布方程解的加权矩及应用 献给余家荣教授100华诞
7
作者 王艳清 李旭 刘全升 《中国科学:数学》 CSCD 北大核心 2019年第11期1687-1706,共20页
假设(ak,bk)为一列独立同分布的取值于R^2的随机变量.考虑随机级数X=∑∞k=1^πk-1^bk的渐近性质,其中π0=1,πk=∏^ki=1^ai.当该级数几乎必然收敛时,它是由随机线性递归方程Xn=anXn-1+bn满足初始条件X0=x∈R所定义的随机序列(Xn)的极... 假设(ak,bk)为一列独立同分布的取值于R^2的随机变量.考虑随机级数X=∑∞k=1^πk-1^bk的渐近性质,其中π0=1,πk=∏^ki=1^ai.当该级数几乎必然收敛时,它是由随机线性递归方程Xn=anXn-1+bn满足初始条件X0=x∈R所定义的随机序列(Xn)的极限分布,且是随机线性自返分布方程Xd=aX+b(分布相等)的唯一解,其中(a,b)=(a1,b1)与X相互独立.本文给出使加权矩E(|X|αl(|X|)存在的准则,其中α> 0,l是一个无穷远处的缓变函数.作为该结论的一个应用,本文得到光滑变换不动点方程Z=∑^Ni=1AiZi解的加权矩存在准则,其中(N,A1,A2,…)是一列随机变量,N∈N∪{∞},Ai∈R+,(Zi)是一列独立并与Z同分布的随机变量,且与(N,A1,A2,…)独立.本文也给出该准则在一般分枝过程和分枝随机游动中的应用,并证明任意一个具有有限均值的光滑变换的不动点可以从具有相同均值的初始分布出发由光滑变换迭代的极限得到. 展开更多
关键词 随机线性递归方程 加权矩 正则变化 光滑变换不动点 分枝过程 分枝随机游动 Mandelbrot鞅
原文传递
Uniform Cramer moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment 被引量:6
8
作者 Xiequan FAN Haijuan HU Quansheng LIU 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第5期891-914,共24页
Let{Zn,n≥0}be a supercritical branching process in an independent and identically distributed random environment.We prove Cramer moderate deviations and Berry-Esseen bounds for log(Zn+n0/Zn0)uniformly in n0∈N,which ... Let{Zn,n≥0}be a supercritical branching process in an independent and identically distributed random environment.We prove Cramer moderate deviations and Berry-Esseen bounds for log(Zn+n0/Zn0)uniformly in n0∈N,which extend the corresponding results by I.Grama,Q.Liu,and M.Miqueu[Stochastic Process.Appl.,2017,127:1255-1281]established for n0=0.The extension is interesting in theory,and is motivated by applications.A new method is developed for the proofs;some conditions of Grama et al.are relaxed in our present setting.An example of application is given in constructing confidence intervals to estimate the criticality parameter in terms of log(Zn+n0/Zn0)and n. 展开更多
关键词 Branching processes random environment Cramer moderatedeviations Berry-Esseen bounds
原文传递
Asymptotic properties branching processes in of supercritical random environments 被引量:3
9
作者 Yingqiu LI Quansheng LIU +1 位作者 Zhiqiang GAO Hesong WANG 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第4期737-751,共15页
We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the nat... We consider a supercritical branching process (Zn) in an independent and identically distributed random environment ξ, and present some recent results on the asymptotic properties of the limit variable W of the natural martingale Wn = Zn/E[Zn|ξ], the convergence rates of W - Wn (by considering the convergence in law with a suitable norming, the almost sure convergence, the convergence in Lp, and the convergence in probability), and limit theorems (such as central limit theorems, moderate and large deviations principles) on (log Zn). 展开更多
关键词 Branching process random environment large deviation moderate deviation central limit theorem MOMENT weighted moment convergence rate
原文传递
Branching random walks with random environments in time 被引量:4
10
作者 Chuamao HUANG Xingang LIANG Quansheng LIU 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第4期835-842,共8页
We consider a branching random walk on N with a random environment in time (denoted by ξ). Let Zn be the counting measure of particles of generation n, and let Zn(t) be its Laplace transform. We show the converge... We consider a branching random walk on N with a random environment in time (denoted by ξ). Let Zn be the counting measure of particles of generation n, and let Zn(t) be its Laplace transform. We show the convergence of the free energy n-llog Zn(t), large deviation principles, and central limit theorems for the sequence of measures {Zn}, and a necessary and sufficient condition for the existence of moments of the limit of the martingale Zn(t)/E[Zn(t)ξ]. 展开更多
关键词 Branching random walk random environment large deviation central limit theorem MOMENT
原文传递
Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices
11
作者 Hui Xiao Ion Grama Quansheng Liu 《Science China Mathematics》 SCIE CSCD 2024年第3期627-646,共20页
Let(g_(n))_(n≥1) be a sequence of independent and identically distributed positive random d×d matrices and consider the matrix product G_(n)=g_(n)…g_1.Under suitable conditions,we establish the Berry-Esseen bou... Let(g_(n))_(n≥1) be a sequence of independent and identically distributed positive random d×d matrices and consider the matrix product G_(n)=g_(n)…g_1.Under suitable conditions,we establish the Berry-Esseen bounds on the rate of convergence in the central limit theorem and Cramer-type moderate deviation expansions,for any matrix norm ‖G_(n)‖ of G_(n),its entries G_(n)^(i,j) and its spectral radius ρ(G_(n)).Extended versions of their joint law with the direction of the random walk G_(n)x are also established,where x is a starting point in the unit sphere of R~d. 展开更多
关键词 Berry-Esseen bound Cramér-type moderate deviation product of random matrices operator norm ENTRY spectral radius
原文传递
Asymptotic expansions in the central limit theorem for a branching Wiener process
12
作者 Zhi-Qiang Gao Quansheng Liu 《Science China Mathematics》 SCIE CSCD 2021年第12期2759-2774,共16页
We consider a branching Wiener process in R^(d),in which particles reproduce as a super-critical Galton-Watson process and disperse according to a Wiener process.For B⊂R^(d),let Z_(n)(B) be the number of particles of ... We consider a branching Wiener process in R^(d),in which particles reproduce as a super-critical Galton-Watson process and disperse according to a Wiener process.For B⊂R^(d),let Z_(n)(B) be the number of particles of generation n located in B.The study of the central limit theorem and related results about the counting measure Z_(n)(·)is important because such results give good descriptions of the con guration of the branching Wiener process at time n.In earlier works,the exact convergence rate in the central limit theorem and the asymptotic expansion until the third order have been given.Here,we establish the asymptotic expansion of any order in the central limit theorem under a moment condition of the form EX(logX)^(1+λ)<∞. 展开更多
关键词 branching Wiener process asymptotic expansion central limit theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部