This article presents the design of a microfabricated bio-inspired flapping-wing Nnano Aaerial Vvehicle(NAV),driven by an electromagnetic system.Our approach is based on artificial wings composed of rigid bodies conne...This article presents the design of a microfabricated bio-inspired flapping-wing Nnano Aaerial Vvehicle(NAV),driven by an electromagnetic system.Our approach is based on artificial wings composed of rigid bodies connected by compliant links,which optimise aerodynamic forces though replicating the complex wing kinematics of insects.The originality of this article lies in a new design methodology based on a triple equivalence between a 3D model,a multibody model,and a mass/spring model(0D)which reduces the number of parameters in the problem.This approach facilitates NAV optimisation by using only the mass/spring model,thereby simplifying the design process while maintaining high accuracy.Two wing geometries are studied and optimised in this article to produce large-amplitude wing motions(approximately 40^\circ),and enabling flapping and twisting motion in quadrature.The results are validated thanks to experimental measurements for the large amplitude and through finite element simulations for the combined motion,confirming the effectiveness of this strategy for a NAV weighing less than 40 mg with a wingspan of under 3 cm.展开更多
This article exhibits the sizing, modelling, and characterization of a power supply (output 3.3 V, 200 mA max, 11 days full autonomy) dedicated to powering a wireless sensor node without a battery but usable as simply...This article exhibits the sizing, modelling, and characterization of a power supply (output 3.3 V, 200 mA max, 11 days full autonomy) dedicated to powering a wireless sensor node without a battery but usable as simply as with a battery. This system is modular for various light levels (indoor and outdoor). It is easily integrable into a sensor node, using only commercial circuits. The choices of the photovoltaic surface (amorphous silicon, η 5%, 35 cm<sup>2</sup>) and of the supercapacitors value (2x 25F, 2.7 V) are explained for permanent operation, considering the solar potential and the consumption. An original part of the paper is devoted to the issue of the startup, in which we demonstrate that after a particular preload, once installed, the device can start on request at the desired time (within 15 days) using as a trigger any light source, such as the LED of a mobile phone.展开更多
基金supported by ANR-ASTRID NANOFLY(ANR-19-ASTR-0023)and French AID(Defense Innovation Agency).
文摘This article presents the design of a microfabricated bio-inspired flapping-wing Nnano Aaerial Vvehicle(NAV),driven by an electromagnetic system.Our approach is based on artificial wings composed of rigid bodies connected by compliant links,which optimise aerodynamic forces though replicating the complex wing kinematics of insects.The originality of this article lies in a new design methodology based on a triple equivalence between a 3D model,a multibody model,and a mass/spring model(0D)which reduces the number of parameters in the problem.This approach facilitates NAV optimisation by using only the mass/spring model,thereby simplifying the design process while maintaining high accuracy.Two wing geometries are studied and optimised in this article to produce large-amplitude wing motions(approximately 40^\circ),and enabling flapping and twisting motion in quadrature.The results are validated thanks to experimental measurements for the large amplitude and through finite element simulations for the combined motion,confirming the effectiveness of this strategy for a NAV weighing less than 40 mg with a wingspan of under 3 cm.
文摘This article exhibits the sizing, modelling, and characterization of a power supply (output 3.3 V, 200 mA max, 11 days full autonomy) dedicated to powering a wireless sensor node without a battery but usable as simply as with a battery. This system is modular for various light levels (indoor and outdoor). It is easily integrable into a sensor node, using only commercial circuits. The choices of the photovoltaic surface (amorphous silicon, η 5%, 35 cm<sup>2</sup>) and of the supercapacitors value (2x 25F, 2.7 V) are explained for permanent operation, considering the solar potential and the consumption. An original part of the paper is devoted to the issue of the startup, in which we demonstrate that after a particular preload, once installed, the device can start on request at the desired time (within 15 days) using as a trigger any light source, such as the LED of a mobile phone.