More than 6 W average power ultraviolet radiation at 355 nm was generated in LiB3O5 (LBO) crystal through the frequency mixing of the fundamental and second harmonic radiation of a Nd:YAG laser. This performance was a...More than 6 W average power ultraviolet radiation at 355 nm was generated in LiB3O5 (LBO) crystal through the frequency mixing of the fundamental and second harmonic radiation of a Nd:YAG laser. This performance was achieved with 38% optical-to-optical conversion efficiency (532 nm to 355 nm).展开更多
Web-like obstacles,such as safety nets,represent a unique hazard for drones,and especially UAVs(Unmanned Aerial Vehicles).Fencing and netting are particularly difficult to distinguish from the background using either ...Web-like obstacles,such as safety nets,represent a unique hazard for drones,and especially UAVs(Unmanned Aerial Vehicles).Fencing and netting are particularly difficult to distinguish from the background using either computer vision,lidar and sonar.In contrast,animals such as flying insects may detect these web-like obstacles using Optic Flow(OF),and more precisely motion parallax.A netting-avoidance solution was proposed using a OF-based detection method.The netting detection method was based on a signature defined by the shape of the OF magnitude across the visual field.We established that the OF shape depends on the orientation of the netting in relation to the hexarotor’s movement.This paper demonstrates netting detection in real-world experiments,according to any direction flight made by the UAV along the net.The proposed NOWA method(which stands for Netting Optical floW-based distinction Algorithm)separates the OF signatures belonging to these different surfaces-netting or background-whatever their orientations.By extracting the OF signatures of these different surfaces and separating them,the proposed visual method can estimate their relative locations and orientations.In a robotic simulations,the multirotor explores and navigates automatically using this netting detection method,using saccades to avoid obstacles.In the simulations,these saccades are also used to simplify netting detection by orienting itself systematically parallel to these planes,a behavior reminiscent of flying insects.展开更多
Enhancing the energy density of lithium-ion batteries through high-voltage cathodes holds great pro-mise.However,traditional carbonate-based electrolytes face significant challenges due to limited oxida-tive stability...Enhancing the energy density of lithium-ion batteries through high-voltage cathodes holds great pro-mise.However,traditional carbonate-based electrolytes face significant challenges due to limited oxida-tive stability and poor compatibility with high-nickel materials.This study introduces a novel electrolyte that combines bis(triethoxysilyl)methane(DMSP)as the sole solvent with lithium bis(fluorosulfonyl)imide(LiFSI)as the lithium salt.This formulation significantly improves the stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes and graphite anodes.The capacity retention of the NCM811 elec-trode increases from 5%to 95%after 1000 cycles at 1 C(3.0-4.5 V),while that of the graphite anode is improved from 22%to 92%after 400 cycles at 0.2 C(0.005-3.0 V).The NCM811//graphite pouch cell exhibits enhanced retention,rising from 12%to 66%at 25℃and from 3%to 65%at 60℃after 300 cycles at 0.2 C.Spectroscopic characterization and theoretical calculations reveal that the steric hindrance of the Si-O-CH_(3)groups in DMSP creates a weakly solvating structure,promoting the formation of Lit^(+)-FSI^(-)ion pairs and aggregation clusters,which enriches the electrode interphase with LiF,Li_(3)N,and Li_(2)SO_(3).Furthermore,DMSP with abundant Si-O effectively enhances the elasticity of the interphase layer,scav-enging harmful substances such as HF and suppressing gas evolution and transition metal dissolution.The simplicity of the DMSP-based electrolyte formulation,coupled with its superior performance,ensures scalability for large-scale manufacturing and practical application in the high-voltage battery.This work provides critical insights into improving interfacial chemistry and addressing compatibility issues in high-voltageNi-rich cathodes.展开更多
Background Ovarian follicular fluid(FF)is a dynamic environment that changes with the seasons,affecting follicle development,ovulation,and oocyte quality.Cells in the follicles release tiny particles called extracellu...Background Ovarian follicular fluid(FF)is a dynamic environment that changes with the seasons,affecting follicle development,ovulation,and oocyte quality.Cells in the follicles release tiny particles called extracellular vesicles(EVs)containing vital regulatory molecules,such as microRNAs(miRNAs).These miRNAs are pivotal in facilitating commu-nication within the follicles through diverse signaling and information transfer forms.EV-coupled miRNA signaling is implicated to be associated with ovarian function,follicle and oocyte growth and response to various environmen-tal insults.Herein,we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses.Results Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the ano-vulatory(spring:non-breeding)and ovulatory(spring,summer,and fall:breeding)seasons and subsequent EV isola-tion and miRNA profiling identified significant variation in EV-miRNA cargo content.We identified 97 miRNAs with dif-ferential expression among the groups and specific clusters of miRNAs involved in the spring transition(miR-149,-200b,-206,-221,-328,and-615)and peak breeding period(including miR-143,-192,-451,-302b,-100,and let-7c).Bioinformatic analyses showed enrichments in various biological functions,e.g.,transcription factor activity,transcrip-tion and transcription regulation,nucleic acid binding,sequence-specific DNA binding,p53 signaling,and post-trans-lational modifications.Cluster analyses revealed distinct sets of significantly up-and down-regulated miRNAs associ-ated with spring anovulatory(Cluster 1)and summer ovulation–the peak breeding season(Clusters 4 and 6).Conclusions The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons,and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.展开更多
Enhancing the energy density of all‐solid‐state batteries(ASSBs)with lithium metal anodes is crucial,but lithium dendrite‐induced short circuits limit fast‐charging capability.This study presents a high‐power ASS...Enhancing the energy density of all‐solid‐state batteries(ASSBs)with lithium metal anodes is crucial,but lithium dendrite‐induced short circuits limit fast‐charging capability.This study presents a high‐power ASSB employing a novel,robust solid electrolyte(SE)with exceptionally high stability at the lithium metal/SE interface,achieved via site‐specific Nb doping in the argyrodite structure.Pentavalent Nb incorporation into Wyckoff 48h sites enhances structural stability,as confirmed by neutron diffraction,X‐ray absorption spectroscopy,magic angle spinning nuclear magnetic resonance,and density functional theory calculations.While Nb doping slightly reduces ionic conductivity,it significantly improves interfacial stability,suppressing dendrite formation and enabling a full cell capable of charging in just 6 min(10‐C rate,16 mA cm^(-2)).This study highlights,for the first time,that electrochemical stability,rather than ionic conductivity,is key to achieving high‐power performance,advancing the commercialization of lithium metal‐based ASSBs.展开更多
Owing to the high specific capacity and high voltage,Ni-rich(LiNi0.8Co0.1Mn0.1O2,LNCM811)cathode has been considered as one of the most promising candidate cathode materials for next generation lithium ion batteries,w...Owing to the high specific capacity and high voltage,Ni-rich(LiNi0.8Co0.1Mn0.1O2,LNCM811)cathode has been considered as one of the most promising candidate cathode materials for next generation lithium ion batteries,whereas severe capacity fading greatly hinders its practical application.Notably,the compatibility of Ni-rich materials with LiBF4-containing electrolyte has not yet been realized.Herein,1 M LiPF6-based electrolyte with introducing 2 M LiBF4 is proposed to dramatically improve the cyclic stability of high voltage LNCM811/Li half-cell.Addition of high concentrated LiBF4 improves the moisture stability of electrolyte,which hinders the generation of harmful by-product HF,resulting in improved interfacial stability of LNCM811.Lithium plating/stripping reaction of Li/Li symmetric cell confirms that the enhanced cyclic stability is ascribed to the improved interfacial stability of LNCM811 instead of lithium electrode.Morphology and composition characterization results reveal that LiBF4 participates in the CEI film-forming reaction,resulting in suppressed oxidation of electrolyte and interfacial structural destruction of LNCM811.展开更多
基金This work was supported by the programme of High Tech Research And Development (863) Programme and the Project of Knowledge Innovation Program of Chinese Academy of Sciences (KJCX1-05-1).
文摘More than 6 W average power ultraviolet radiation at 355 nm was generated in LiB3O5 (LBO) crystal through the frequency mixing of the fundamental and second harmonic radiation of a Nd:YAG laser. This performance was achieved with 38% optical-to-optical conversion efficiency (532 nm to 355 nm).
基金The participation of X.D.in this research was made possible by the joint PhD grant from the Agence Innovation Défense(AID)and Aix-Marseille UniversityFinancial support for the running costs was provided via a ProxiLearn project grant(ANR-19-ASTR-0009)to F.R.+2 种基金via SpotReturn project grant(ANR-21-ASRO-0001-02)to T.R.and F.R.from the ANR(Astrid Program)X.D.and F.R.were also supported by Aix Marseille University and the CNRS(Life Science,Information Science,and Engineering and Science&technology Institutes)The facilities for the experimental tests has been mainly provided by ROBOTEX 2.0(Grants ROBOTEX ANR-10-EQPX-44-01 and TIRREX ANR-21-ESRE-0015).
文摘Web-like obstacles,such as safety nets,represent a unique hazard for drones,and especially UAVs(Unmanned Aerial Vehicles).Fencing and netting are particularly difficult to distinguish from the background using either computer vision,lidar and sonar.In contrast,animals such as flying insects may detect these web-like obstacles using Optic Flow(OF),and more precisely motion parallax.A netting-avoidance solution was proposed using a OF-based detection method.The netting detection method was based on a signature defined by the shape of the OF magnitude across the visual field.We established that the OF shape depends on the orientation of the netting in relation to the hexarotor’s movement.This paper demonstrates netting detection in real-world experiments,according to any direction flight made by the UAV along the net.The proposed NOWA method(which stands for Netting Optical floW-based distinction Algorithm)separates the OF signatures belonging to these different surfaces-netting or background-whatever their orientations.By extracting the OF signatures of these different surfaces and separating them,the proposed visual method can estimate their relative locations and orientations.In a robotic simulations,the multirotor explores and navigates automatically using this netting detection method,using saccades to avoid obstacles.In the simulations,these saccades are also used to simplify netting detection by orienting itself systematically parallel to these planes,a behavior reminiscent of flying insects.
基金supported by the National Natural Science Foundation of China (Grant No. 22179041)the Guangzhou Science and Technology Plan Project (Grant No. 2024A04J4354)the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010034)
文摘Enhancing the energy density of lithium-ion batteries through high-voltage cathodes holds great pro-mise.However,traditional carbonate-based electrolytes face significant challenges due to limited oxida-tive stability and poor compatibility with high-nickel materials.This study introduces a novel electrolyte that combines bis(triethoxysilyl)methane(DMSP)as the sole solvent with lithium bis(fluorosulfonyl)imide(LiFSI)as the lithium salt.This formulation significantly improves the stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes and graphite anodes.The capacity retention of the NCM811 elec-trode increases from 5%to 95%after 1000 cycles at 1 C(3.0-4.5 V),while that of the graphite anode is improved from 22%to 92%after 400 cycles at 0.2 C(0.005-3.0 V).The NCM811//graphite pouch cell exhibits enhanced retention,rising from 12%to 66%at 25℃and from 3%to 65%at 60℃after 300 cycles at 0.2 C.Spectroscopic characterization and theoretical calculations reveal that the steric hindrance of the Si-O-CH_(3)groups in DMSP creates a weakly solvating structure,promoting the formation of Lit^(+)-FSI^(-)ion pairs and aggregation clusters,which enriches the electrode interphase with LiF,Li_(3)N,and Li_(2)SO_(3).Furthermore,DMSP with abundant Si-O effectively enhances the elasticity of the interphase layer,scav-enging harmful substances such as HF and suppressing gas evolution and transition metal dissolution.The simplicity of the DMSP-based electrolyte formulation,coupled with its superior performance,ensures scalability for large-scale manufacturing and practical application in the high-voltage battery.This work provides critical insights into improving interfacial chemistry and addressing compatibility issues in high-voltageNi-rich cathodes.
基金Southern Illinois University,Carbondale,ILMinistry of Higher Education&Scientific Research,Baghdad,Iraq+2 种基金NIFA-USDA Hatch project accession#1016077(Multistate#W4171)USDAARS project 6066-31000-015-00DNIH MS-IDeA network of Biomedical Research Excellence award 5P20GMI03476-19.GMI received a PhD scholarship from the Ministry of Higher Education&Scientific Research,Baghdad,Iraq.
文摘Background Ovarian follicular fluid(FF)is a dynamic environment that changes with the seasons,affecting follicle development,ovulation,and oocyte quality.Cells in the follicles release tiny particles called extracellular vesicles(EVs)containing vital regulatory molecules,such as microRNAs(miRNAs).These miRNAs are pivotal in facilitating commu-nication within the follicles through diverse signaling and information transfer forms.EV-coupled miRNA signaling is implicated to be associated with ovarian function,follicle and oocyte growth and response to various environmen-tal insults.Herein,we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses.Results Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the ano-vulatory(spring:non-breeding)and ovulatory(spring,summer,and fall:breeding)seasons and subsequent EV isola-tion and miRNA profiling identified significant variation in EV-miRNA cargo content.We identified 97 miRNAs with dif-ferential expression among the groups and specific clusters of miRNAs involved in the spring transition(miR-149,-200b,-206,-221,-328,and-615)and peak breeding period(including miR-143,-192,-451,-302b,-100,and let-7c).Bioinformatic analyses showed enrichments in various biological functions,e.g.,transcription factor activity,transcrip-tion and transcription regulation,nucleic acid binding,sequence-specific DNA binding,p53 signaling,and post-trans-lational modifications.Cluster analyses revealed distinct sets of significantly up-and down-regulated miRNAs associ-ated with spring anovulatory(Cluster 1)and summer ovulation–the peak breeding season(Clusters 4 and 6).Conclusions The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons,and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
基金supported by Companhia Brasileira de Metalurgia e Mineração(CBMM)(CW2246174‐220221)the Technology Innovation Program(20010044,20012224)funded by Ministry of Trade,Industry&Energy(MOTIE,Korea)the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS‐2024‐00446825).
文摘Enhancing the energy density of all‐solid‐state batteries(ASSBs)with lithium metal anodes is crucial,but lithium dendrite‐induced short circuits limit fast‐charging capability.This study presents a high‐power ASSB employing a novel,robust solid electrolyte(SE)with exceptionally high stability at the lithium metal/SE interface,achieved via site‐specific Nb doping in the argyrodite structure.Pentavalent Nb incorporation into Wyckoff 48h sites enhances structural stability,as confirmed by neutron diffraction,X‐ray absorption spectroscopy,magic angle spinning nuclear magnetic resonance,and density functional theory calculations.While Nb doping slightly reduces ionic conductivity,it significantly improves interfacial stability,suppressing dendrite formation and enabling a full cell capable of charging in just 6 min(10‐C rate,16 mA cm^(-2)).This study highlights,for the first time,that electrochemical stability,rather than ionic conductivity,is key to achieving high‐power performance,advancing the commercialization of lithium metal‐based ASSBs.
基金supported by the National Natural Science Foundation of China(21573080)the Guangdong Program for Support of Top-notch Young Professionals(2015TQ01N870)+1 种基金Distinguished Young Scholar(2017B030306013)the Science and Technology Planning Project of Guangdong Province(Grant no.2017B090901020)
文摘Owing to the high specific capacity and high voltage,Ni-rich(LiNi0.8Co0.1Mn0.1O2,LNCM811)cathode has been considered as one of the most promising candidate cathode materials for next generation lithium ion batteries,whereas severe capacity fading greatly hinders its practical application.Notably,the compatibility of Ni-rich materials with LiBF4-containing electrolyte has not yet been realized.Herein,1 M LiPF6-based electrolyte with introducing 2 M LiBF4 is proposed to dramatically improve the cyclic stability of high voltage LNCM811/Li half-cell.Addition of high concentrated LiBF4 improves the moisture stability of electrolyte,which hinders the generation of harmful by-product HF,resulting in improved interfacial stability of LNCM811.Lithium plating/stripping reaction of Li/Li symmetric cell confirms that the enhanced cyclic stability is ascribed to the improved interfacial stability of LNCM811 instead of lithium electrode.Morphology and composition characterization results reveal that LiBF4 participates in the CEI film-forming reaction,resulting in suppressed oxidation of electrolyte and interfacial structural destruction of LNCM811.