The Mekkam inlier is located 50 km southeast of the town of Taourirt,in northeastern Morocco.It offers a great opportunity for the study of Variscan magmatism in Morocco.This inlier is punctuated by small magmatic bod...The Mekkam inlier is located 50 km southeast of the town of Taourirt,in northeastern Morocco.It offers a great opportunity for the study of Variscan magmatism in Morocco.This inlier is punctuated by small magmatic bodies which we will characterize through a petrographic and geochemical study to situate this inlier in its geotectonic context.The petrographic study revealed the existence of three trends:acidic,intermediate,and basic,which are represented by facies ranging from granites to basanites,including andesites,rhyolites,trachytes,dacites,quartz microdiorites,Aplite and microgranites.All these facies have a mineralogical assemblage dominated by quartz,plagioclase,oligoclase,potassium feldspar,pyroxene,and biotite;the most abundant accessory minerals are zircon and apatite.Green hornblende is found in microdiorites and dacites.The geochemical analysis,conducted through the examination of major elements,trace elements,and rare earth elements,has uncovered the presence of two distinct magmatic series:a calc-alkaline series of the island arc type or active continental margin,and another alkaline series of syn-collision.Based on this combined data,we propose that the Mekkam sector represents a magmatic arc developed within a compressional tectonic regime located above a subduction zone,which was later followed by an intracontinental collision phase.展开更多
Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in order to incorporate different heteroatoms on the surface. O-, S- and N-containing groups were successfully introduced onto the...Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in order to incorporate different heteroatoms on the surface. O-, S- and N-containing groups were successfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation processes: catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.展开更多
Mangenese oxides were synthesized using two new methods,a novel solvent‐free reaction and a reflux technique,that produced cryptomelane‐type products(K‐OMS‐2).Oxides were also synthesized using conventional method...Mangenese oxides were synthesized using two new methods,a novel solvent‐free reaction and a reflux technique,that produced cryptomelane‐type products(K‐OMS‐2).Oxides were also synthesized using conventional methods and all specimens were applied to the oxidation of ethyl acetate and butyl acetate,acting as models for the volatile organic compounds found in industrial emissions.The catalysts were also characterized using N2adsorption,X‐ray diffraction,scanning electron microscopy,temperature programmed reduction and X‐ray photoelectron spectroscopy.Each of the manganese oxides was found to be very active during the oxidation of both esters to CO2,and the synthesis methodology evidently had a significant impact on catalytic performance.The K‐OMS‐2nanorods synthesized by the solvent‐free method showed higher activity than K‐OMS‐2materials prepared by the reflux technique,and samples with cryptomelane were more active than those prepared by the conventional methods.The catalyst with the highest performance also exhibited good stability and allowed90%conversion of ethyl and butyl acetate to CO2at213and202°C,respectively.Significant differences in the catalyst performance were observed,clearly indicating that K‐OMS‐2nanorods prepared by the solvent‐free reaction were better catalysts for the selected VOC oxidations than the mixtures of manganese oxides traditionally obtained with conventional synthesis methods.The superior performance of the K‐OMS‐2catalysts might be related to the increased average oxidation state of the manganese in these structures.Significant correlations between the catalytic performance and the surface chemical properties were also identified,hig-hlighting the K‐OMS‐2properties associated with the enhanced catalytic performance of the materials.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electroca...The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed.展开更多
Until recently,potassium(K)has not received considerable attention because of the general belief that soils contain ample amounts of this element.In addition,low rates of K fertilizer application in agriculture have l...Until recently,potassium(K)has not received considerable attention because of the general belief that soils contain ample amounts of this element.In addition,low rates of K fertilizer application in agriculture have led to rapid depletion of K in the rhizosphere soil in many underdeveloped countries.This results in various negative impacts,including preventing optimum utilization of applied nitrogen and phosphorus fertilizers.To compensate for these losses,massive use of K fertilizers in agriculture has been suggested.Potassium fertilizers are manufactured from rock minerals,particularly sylvite(KCl)and carnallite(KCl·MgCl2·6H2O).Unfortunately,to date,there is no cost-effective technology available for converting rock minerals into potassic fertilizers.Potassium-solubilizing microorganisms(KSMs)can release K from soil/minerals into plant-available forms,which could be a sustainable option.The possibility of using KSMs as efficient biofertilizers to improve crop production has been increasingly highlighted by researchers.In this review,the existing forms of K in soils and their availability and dynamic equilibrium are discussed.In addition,different K fertilizers and their advantages and disadvantages for crops are described.Furthermore,the microorganisms usually reported as K solubilizers,the research progress on KSMs,and future insights on the use of these KSMs in agriculture are reviewed.Screening and analyses of the published literature show that organic acid production is the common mechanism of K solubilization by bacteria and fungi.This review may serve as a proposal for the future research avenues identified here.展开更多
Sclareol,an antifungal specialized metabolite produced by clary sage,Salvia sclarea,is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide.Sclareol is mainly produced in ...Sclareol,an antifungal specialized metabolite produced by clary sage,Salvia sclarea,is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide.Sclareol is mainly produced in clary sage flower calyces;however,the cellular localization of the sclareol biosynthesis remains unknown.To elucidate the site of sclareol biosynthesis,we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging(LDI–FTICR-MSI)and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes(GTs).We showed that sclareol specifically accumulates in GTs’gland cells in which sclareol biosynthesis genes are strongly expressed.We next isolated a glabrous beardless mutant and demonstrate that more than 90%of the sclareol is produced by the large capitate GTs.Feeding experiments,using 1-13 C-glucose,and specific enzyme inhibitors further revealed that the methylerythritol-phosphate(MEP)biosynthetic pathway is the main source of isopentenyl diphosphate(IPP)precursor used for the biosynthesis of sclareol.Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.展开更多
Abstract: Distribution and diversity of rhizobial strains associated with Acacia senegal (L.) Willd. in relation to seed provenances in soils from arid (Dahra) and semiarid (Goudiry) zones of Senegal were investigated...Abstract: Distribution and diversity of rhizobial strains associated with Acacia senegal (L.) Willd. in relation to seed provenances in soils from arid (Dahra) and semiarid (Goudiry) zones of Senegal were investigated. PCR-RFLP performed on 16S-23S rDNA intergenic spacer (IGS) of nodule crude extracts revealed a high genetic diversity of rhizobial strains, which was higher in the semiarid region than in the arid region. The distribution of rhizobial populations was influenced by soil physical and chemical characteristics, and by A. senegal provenances as shown by the analysis of correspondence. In contrast, the phenotypic diversity of rhizobial strains was not correlated with the soil origin. The phylogenetic tree (performed by the maximum likelihood algorithm) of IGS 16S-23S sequences showed that most of the rhizobial strains nodulating A. senegal were closely related to Mesorhizobium plurifarium. Our results showed that rhizobial taxa associated with A. senegal were mainly distributed according to soil physical and chemical characteristics, and A. senegal provenances. A large subset of A. senegal root-nodulating bacteria had high diversity that correlated with the most favourable environmental conditions. Understanding the diversity and distribution of rhizobial strains may be exploited in the formulation of A. senegal inoculants for different seed provenances for resilience to soil stresses in various environmental conditions.展开更多
Salinity is a major problem that seriously impacts agricultural production, particularly that of tomato (Solanum lycopersicum L.). However, the plant has the ability to associate with Arbuscular Mycorrhizal Fungi to b...Salinity is a major problem that seriously impacts agricultural production, particularly that of tomato (Solanum lycopersicum L.). However, the plant has the ability to associate with Arbuscular Mycorrhizal Fungi to better tolerate salt stress. Thus, thanks to the extension of the AMF hyphae, the hydromineral nutrition and the tolerance to excess toxic ions (Na<sup>+</sup> and Cl<sup>-</sup>) of the plant are optimized. In this context, the contribution of AMF to the salt stress tolerance of two tomato varieties under semi-controlled conditions was studied. To do this, the frequency and intensity of mycorrhization, the relative mycorrhizal dependency, the survival rates, the aerial and root dry weights, the mineral (P, K<sup>+</sup>, Na<sup>+</sup>) and proline contents of the plants subjected to four levels of salinity [0, 70, 140 and 210 mM of NaCl] were evaluated. All the parameters assessed appeared to be dependent on the variety, the fungal strain and the NaCl concentration. With the Lady Nema variety, inoculation with the Claroideoglomus etunicatum strain at [NaCl 140 mM] resulted in the highest frequencies (54%), intensities (40.47%), and relative mycorrhizal dependencies (19.65%). This same symbiotic couple recorded high survival rates (55%) and aerial (2.03 g) and root (0.50 g) dry weights. Significant contents of K<sup>+ </sup>(Leaves: 7.5 mg⋅g<sup>-1</sup>;Roots: 4.4 mg⋅g<sup>-1</sup> of dry matter), P (Leaves: 15.15 mg⋅g-1</sup> of dry matter) and proline (975 nmoles⋅g-1</sup> of fresh matter) were also recorded by this pair, with the lowest Na<sup>+</sup> contents (Leaves: 1.93 mg⋅g-1</sup>;Roots: 0.96 mg⋅g-1</sup> of dry matter). For the Mongal variety, at [NaCl 140 mM], the highest frequencies (50.36%), intensities (35.14%) and relative mycorrhizal dependencies (43.95%) were obtained thanks to inoculation with Rhizophagus fasciculatus. The highest survival rates (59%) and aerial (2.58 g) and root (0.79 g) dry weights were also obtained with this symbiotic couple. The contents of K<sup>+</sup> (Leaves: 6.1 mg⋅g-1</sup>;Roots: 3.09 mg⋅g-1 </sup>of dry matter), P (Leaves: 12.49 mg⋅g-1</sup> of dry matter) and proline (942 nmoles⋅g-1</sup> of fresh matter) the most important and those in Na<sup>+</sup> the lowest (Leaves: 2.03 mg⋅g-1</sup>;Roots: 1.53 mg⋅g-1</sup> of dry matter) were also recorded for this same pair. Thus, the best fungal partner for the Lady Nema variety is C. etunicatum, followed by F. mosseae and R. fasciculatus, while for the Mongal variety it is R. fasciculatus, followed by C. etunicatum and F. mosseae.展开更多
In sub-Saharan Africa, Sorghum (Sorghum bicolor) is an important cereal for both human being and animals. Unfortunately, its production is confronted to soils with deficiency of phosphorus. Traditional use of mineral ...In sub-Saharan Africa, Sorghum (Sorghum bicolor) is an important cereal for both human being and animals. Unfortunately, its production is confronted to soils with deficiency of phosphorus. Traditional use of mineral phosphate on this culture fertilization is expensive and may cause contamination. It is thus necessary to seek more efficient and economic reasonable techniques to improve sorghum growth. Arbuscular mycorrhizal fungi (AMF) constitute a reference for phosphorus improvement and plant nutrition. This study aimed to investigate the effects of AMF strains (Rhizophagus irregulare, Glomus aggregatum, G. mosseae) on growth of sorghum cultivated in greenhouse on Sangalkam soil (Senegal) sterilized with or without Tilemsi natural phosphate (PNT). The phosphorus can represent until 0.2% of the dry weight of the plant. Two fertilizers were used separately and together to doses of 20 g by strain, 100 mg and 200 mg of PNT. The experiment lasted for 120 d. Results showed that mycorrhizal colonization intensity varied between 40% and 80% for all treatments. AMF inoculation increased sorghum plant height and biomass, regardless of PNT amendment. The inoculation permits to bring strain of AMF that intervene efficiently in the transportation and the availability of phosphorus for the plant.展开更多
In arid and semi-arid regions, the growth and development of cultivated plants, especially tomato (Solanum lycopersicum L.), are severely limited by water deficit. Thus, to cope with this constraint, the plant establi...In arid and semi-arid regions, the growth and development of cultivated plants, especially tomato (Solanum lycopersicum L.), are severely limited by water deficit. Thus, to cope with this constraint, the plant establishes symbiotic relationships with arbuscular mycorrhizal fungi (AMF) in the soil whose extension of the hyphae allows a better and deeper exploration;this notably improves the hydromineral nutrition of the plant. Therefore, the choice of fungal partner becomes crucial for the establishment of a crop in water-deficient soil. In this context, the contribution of AMF to the water stress tolerance of two varieties of tomato plants was assessed under semi-controlled conditions. Parameters, such as the mycorrhizal frequency, intensity of mycorrhization, relative mycorrhizal dependency, growth, and biochemical parameters (carbon, nitrogen, phosphorus, and proline contents) of plants subjected to three levels of water stress (T100, T70, and T30), were evaluated. The highest frequencies and intensities of mycorrhization and relative mycorrhizal dependencies were obtained with plants of the Xewel variety inoculated with Rhizophagus fasciculatus (F: 95.24%, 88.35%, and 13.64%;M: 40.52%, 37.52%, and 11.22%;D: 23.7%, 54.4%, and 78.82%) and in those of the Lady Nema variety inoculated with Claroideoglomus etunicatum (F: 95.12%, 87.01%, and 15.25%;M: 40.66%, 37.99%, and 11.42%;D: 19.27%, 57.01%, and 70.98%), respectively at water regimes of T100, T70 and T30. These same symbiotic couples recorded, at T30, the best survival rates (+ 40%) and the higher aerial (77% and 74%) and root dry weights (80% and 59%). Plants of the Xewel variety inoculated with R. fasciculatus recorded the highest contents of carbon (T70: 30.59% and T30: 21.55%) and phosphorus (T70: 0.18% and T30: 0.17%). Plants of the Lady Nema variety recorded the highest nitrogen contents with 3.51% and 3.20%, respectively at T70 and T30. Plants of the Lady Nema variety, inoculated with C. etunicatum, also recorded the highest proline contents (572.25, 739.44, and 1165 nmoles•g<sup>−1</sup> of fresh material), followed by those of the Xewel variety inoculated with R. fasciculatus (580.36, 763.65, and 1112.11 nmoles•g<sup>−1</sup> of fresh matter), respectively at T100, T70, and T30. For the Lady Nema variety, the best fungal partner is C. etunicatum, followed by R. fasciculatus and, finally, Funneliformis mosseae. However, for the plants of the Xewel variety, R. fasciculatus is the most efficient, followed by F. mosseae and C. etunicatum. This suggests that, in tomatoes, the efficiency of mycorrhizal symbiosis under water stress conditions is not only dependent on the host plant but on both associated symbiotic partners. Hence, it is a need for screening to identify the best symbiotic couples in a stressful environment.展开更多
<p align="justify"> <span style="font-family:Verdana;">Soil salinization is one of the major causes of land degradation. In Senegal, this phenomenon continues to grow, making soils unsu...<p align="justify"> <span style="font-family:Verdana;">Soil salinization is one of the major causes of land degradation. In Senegal, this phenomenon continues to grow, making soils unsuitable for agriculture. To rehabilitate salty lands, one of the recommended strategies is the use of salt-tolerant plants. Among them, plants of </span><i><i><span style="font-family:Verdana;">Casuarinaceae</span></i></i><span style="font-family:Verdana;"> family form a relationship with symbiotic microorganisms such as arbuscular mycorrhizal fungi and nitrogen fixing bacteria. It has been shown that symbiotic microorganisms play an important role in the establishment of tolerant plants in saline conditions (Djighaly </span><i><i><span style="font-family:Verdana;">et al</span></i></i><span style="font-family:Verdana;">., 2018). They improve plant performance and reduce transplant shock under salt stress conditions (Diagne </span><i><i><span style="font-family:Verdana;">et al</span></i></i><span style="font-family:Verdana;">., 2014). These microorganisms can be used as biofertilizers. However, inocula containing symbiotic microorganisms are either too expensive or unavailable in many developing countries. The aim of this study is to test alternatively affordable and low-tech solutions to promote symbiotic interactions such as Casuarina crushed nodule, Casuarina rhizosphere soil and Casuarina leaves compost that may contain symbiotic microorganisms and also nutrients such as N and phosphorus. Two species of Casuarina (</span><i><i><span style="font-family:Verdana;">Casuarina equisetifolia</span></i></i><span style="font-family:Verdana;"> L. and </span><i><i><span style="font-family:Verdana;">Casuarina obesa</span></i></i><span style="font-family:Verdana;"> Miq.) were grown in the greenhouse on sterile soil to which an amendment was added (Casuarina crushed nodules, Casuarina Rhizospheric soil or Casuarina leaves compost). Plants were subjected to saline stress. After four months of cultivation, they were harvested and morphological and physiological parameters were determined. Results showed that inoculation with Casuarina crushed nodules, Casuarina rhizospheric soil and Casuarina leaves compost improved growth, total dry biomass, total chlorophyll and proline contents of </span><i><i><span style="font-family:Verdana;">C. equisetifolia</span></i></i><span style="font-family:Verdana;"> and </span><i><i><span style="font-family:Verdana;">C. obesa</span></i></i><span style="font-family:Verdana;"> plants in salt stress condition. These positive effects were more important in </span><i><i><span style="font-family:Verdana;">C. obesa</span></i></i><span style="font-family:Verdana;"> plants amended with Casuarina leaves compost. This study shows that Casuarina leaves compost can play an important role in the rehabilitation of saline soils by improving Casuarina trees performance in saline conditions.</span> </p>展开更多
Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Edi...Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".展开更多
Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporizatio...Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporization temperatures are very high for a liquid that is neither ionic nor metallic, and whose molar mass is low. Thus, water remains liquid at atmospheric pressure up to 100C while similar molecules such as H2S, H2Se, H2Te for example would give a vaporization temperature close to 80C. This cohesion is in fact ensured by hydrogen bonds between water molecules. This type of bonds between neighboring molecules, hydrogen bonds, is quite often found in chemistry [1] [2]. Any change in the state of aggregation of a substance occurs with the absorption or release of a certain amount of latent heat of transformation. Latent heat of fusion, vaporization or sublimation is the ratio of the energy supplied as heat to the mass of the substance that is melted, vaporized or sublimated. As a result of the reversibility of the processes, the fusion heat is equal to the heat released in the reverse process: crystallization and solidification heat. And likewise the heat of vaporization is equal to the heat of condensation. This equality of heat is often used to determine experimentally either of these quantities. There are two main measurement methods: 1) Direct measurement using the calorimeter, 2) Indirect measure based on the use of the VantHoff relationship. The objective of this work is to measure the latent heat of water vaporization and verify the compatibility of the experimental values with the values given by the tables using the indirect method.展开更多
The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bon...The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods.展开更多
The objective of this study was to evaluate the differences in composition among six brands of conventional soybean and six genetically modified cultivars (GM). We focused on the isoflavones profile and mineral conten...The objective of this study was to evaluate the differences in composition among six brands of conventional soybean and six genetically modified cultivars (GM). We focused on the isoflavones profile and mineral content questioning the substantial equivalence between conventional and GM organisms. The statement of compliance label for conventional grains was verified for the presence of genetic modified genes by real time polymerase chain reaction (PCR). We did not detect the presence of the 35S promoter in commercial samples, indicating the absence of transgene insertion. For mineral analysis, we used the method of inductively coupled plasma-optical emission spectrometry (ICP-OES). Isoflavones quantification was performed by high performance liquid chromatography (HPLC). The results showed no statistical difference between the conventional and transgenic soybean groups concerning isoflavone content and mineral composition. The concentration of potassium, the main mineral component of soy, was the highest in conventional soybeans compared to that in GM soy, while GM samples presented the highest concentrations of iron.展开更多
Proteintyrosine phosphatase 1B(PTP1B)inhibitionis consideredas a potentialtherapeuticfor the treatmentof cancer,type2 diabetes,andobesity.Inour presentwork,weinvestigatedtheanti-diabeticpotentialof8-hydroxydiospyrin(8...Proteintyrosine phosphatase 1B(PTP1B)inhibitionis consideredas a potentialtherapeuticfor the treatmentof cancer,type2 diabetes,andobesity.Inour presentwork,weinvestigatedtheanti-diabeticpotentialof8-hydroxydiospyrin(8-HDN)from D.lotus against the PTP1B enzyme.It showed significant inhibitory activity of PTP1B with an IC 50 value of 18.37±0.02μM.A detailed molecular docking study was carried out to analyze the binding orientation,binding energy,and mechanism of inhibition.A comparative investigation of 8-HDN in the catalytic,as well as the allosteric site of PTP1B,was performed.Binding energy data showed that compound 8-HDN is more selective for the allosteric site and hence avoids the problems associated with catalytic site inhibition.The inhibition mechanism of 8-HDN can be further investigated as an active lead compound against PTP1B by using in vitro and in vivo models.展开更多
Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-di...Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications.展开更多
文摘The Mekkam inlier is located 50 km southeast of the town of Taourirt,in northeastern Morocco.It offers a great opportunity for the study of Variscan magmatism in Morocco.This inlier is punctuated by small magmatic bodies which we will characterize through a petrographic and geochemical study to situate this inlier in its geotectonic context.The petrographic study revealed the existence of three trends:acidic,intermediate,and basic,which are represented by facies ranging from granites to basanites,including andesites,rhyolites,trachytes,dacites,quartz microdiorites,Aplite and microgranites.All these facies have a mineralogical assemblage dominated by quartz,plagioclase,oligoclase,potassium feldspar,pyroxene,and biotite;the most abundant accessory minerals are zircon and apatite.Green hornblende is found in microdiorites and dacites.The geochemical analysis,conducted through the examination of major elements,trace elements,and rare earth elements,has uncovered the presence of two distinct magmatic series:a calc-alkaline series of the island arc type or active continental margin,and another alkaline series of syn-collision.Based on this combined data,we propose that the Mekkam sector represents a magmatic arc developed within a compressional tectonic regime located above a subduction zone,which was later followed by an intracontinental collision phase.
文摘Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in order to incorporate different heteroatoms on the surface. O-, S- and N-containing groups were successfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation processes: catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.
基金This work was supported by project “AIProcMat@N2020‐Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE‐01‐0145‐FEDER‐000006, supported by Norte Portugal Regional Operational Programme
文摘Mangenese oxides were synthesized using two new methods,a novel solvent‐free reaction and a reflux technique,that produced cryptomelane‐type products(K‐OMS‐2).Oxides were also synthesized using conventional methods and all specimens were applied to the oxidation of ethyl acetate and butyl acetate,acting as models for the volatile organic compounds found in industrial emissions.The catalysts were also characterized using N2adsorption,X‐ray diffraction,scanning electron microscopy,temperature programmed reduction and X‐ray photoelectron spectroscopy.Each of the manganese oxides was found to be very active during the oxidation of both esters to CO2,and the synthesis methodology evidently had a significant impact on catalytic performance.The K‐OMS‐2nanorods synthesized by the solvent‐free method showed higher activity than K‐OMS‐2materials prepared by the reflux technique,and samples with cryptomelane were more active than those prepared by the conventional methods.The catalyst with the highest performance also exhibited good stability and allowed90%conversion of ethyl and butyl acetate to CO2at213and202°C,respectively.Significant differences in the catalyst performance were observed,clearly indicating that K‐OMS‐2nanorods prepared by the solvent‐free reaction were better catalysts for the selected VOC oxidations than the mixtures of manganese oxides traditionally obtained with conventional synthesis methods.The superior performance of the K‐OMS‐2catalysts might be related to the increased average oxidation state of the manganese in these structures.Significant correlations between the catalytic performance and the surface chemical properties were also identified,hig-hlighting the K‐OMS‐2properties associated with the enhanced catalytic performance of the materials.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by project PEstC/EQB/LA0020/2011 financed by FEDER through COMPETE-Programa Operacional Factores de CompetitividadeFCT-Fundao para a Ciência e a Tecnologia
文摘The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed.
文摘Until recently,potassium(K)has not received considerable attention because of the general belief that soils contain ample amounts of this element.In addition,low rates of K fertilizer application in agriculture have led to rapid depletion of K in the rhizosphere soil in many underdeveloped countries.This results in various negative impacts,including preventing optimum utilization of applied nitrogen and phosphorus fertilizers.To compensate for these losses,massive use of K fertilizers in agriculture has been suggested.Potassium fertilizers are manufactured from rock minerals,particularly sylvite(KCl)and carnallite(KCl·MgCl2·6H2O).Unfortunately,to date,there is no cost-effective technology available for converting rock minerals into potassic fertilizers.Potassium-solubilizing microorganisms(KSMs)can release K from soil/minerals into plant-available forms,which could be a sustainable option.The possibility of using KSMs as efficient biofertilizers to improve crop production has been increasingly highlighted by researchers.In this review,the existing forms of K in soils and their availability and dynamic equilibrium are discussed.In addition,different K fertilizers and their advantages and disadvantages for crops are described.Furthermore,the microorganisms usually reported as K solubilizers,the research progress on KSMs,and future insights on the use of these KSMs in agriculture are reviewed.Screening and analyses of the published literature show that organic acid production is the common mechanism of K solubilization by bacteria and fungi.This review may serve as a proposal for the future research avenues identified here.
基金This work was supported by the Plant Biology and Breeding department in INRA,the grants Program LabEx Saclay Plant Sciences-SPS(ANR-10-LABX-40-SPS)Financial support from the National FT-ICR network(FR 3624 CNRS)is gratefully acknowledged.
文摘Sclareol,an antifungal specialized metabolite produced by clary sage,Salvia sclarea,is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide.Sclareol is mainly produced in clary sage flower calyces;however,the cellular localization of the sclareol biosynthesis remains unknown.To elucidate the site of sclareol biosynthesis,we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging(LDI–FTICR-MSI)and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes(GTs).We showed that sclareol specifically accumulates in GTs’gland cells in which sclareol biosynthesis genes are strongly expressed.We next isolated a glabrous beardless mutant and demonstrate that more than 90%of the sclareol is produced by the large capitate GTs.Feeding experiments,using 1-13 C-glucose,and specific enzyme inhibitors further revealed that the methylerythritol-phosphate(MEP)biosynthetic pathway is the main source of isopentenyl diphosphate(IPP)precursor used for the biosynthesis of sclareol.Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.
文摘Abstract: Distribution and diversity of rhizobial strains associated with Acacia senegal (L.) Willd. in relation to seed provenances in soils from arid (Dahra) and semiarid (Goudiry) zones of Senegal were investigated. PCR-RFLP performed on 16S-23S rDNA intergenic spacer (IGS) of nodule crude extracts revealed a high genetic diversity of rhizobial strains, which was higher in the semiarid region than in the arid region. The distribution of rhizobial populations was influenced by soil physical and chemical characteristics, and by A. senegal provenances as shown by the analysis of correspondence. In contrast, the phenotypic diversity of rhizobial strains was not correlated with the soil origin. The phylogenetic tree (performed by the maximum likelihood algorithm) of IGS 16S-23S sequences showed that most of the rhizobial strains nodulating A. senegal were closely related to Mesorhizobium plurifarium. Our results showed that rhizobial taxa associated with A. senegal were mainly distributed according to soil physical and chemical characteristics, and A. senegal provenances. A large subset of A. senegal root-nodulating bacteria had high diversity that correlated with the most favourable environmental conditions. Understanding the diversity and distribution of rhizobial strains may be exploited in the formulation of A. senegal inoculants for different seed provenances for resilience to soil stresses in various environmental conditions.
文摘Salinity is a major problem that seriously impacts agricultural production, particularly that of tomato (Solanum lycopersicum L.). However, the plant has the ability to associate with Arbuscular Mycorrhizal Fungi to better tolerate salt stress. Thus, thanks to the extension of the AMF hyphae, the hydromineral nutrition and the tolerance to excess toxic ions (Na<sup>+</sup> and Cl<sup>-</sup>) of the plant are optimized. In this context, the contribution of AMF to the salt stress tolerance of two tomato varieties under semi-controlled conditions was studied. To do this, the frequency and intensity of mycorrhization, the relative mycorrhizal dependency, the survival rates, the aerial and root dry weights, the mineral (P, K<sup>+</sup>, Na<sup>+</sup>) and proline contents of the plants subjected to four levels of salinity [0, 70, 140 and 210 mM of NaCl] were evaluated. All the parameters assessed appeared to be dependent on the variety, the fungal strain and the NaCl concentration. With the Lady Nema variety, inoculation with the Claroideoglomus etunicatum strain at [NaCl 140 mM] resulted in the highest frequencies (54%), intensities (40.47%), and relative mycorrhizal dependencies (19.65%). This same symbiotic couple recorded high survival rates (55%) and aerial (2.03 g) and root (0.50 g) dry weights. Significant contents of K<sup>+ </sup>(Leaves: 7.5 mg⋅g<sup>-1</sup>;Roots: 4.4 mg⋅g<sup>-1</sup> of dry matter), P (Leaves: 15.15 mg⋅g-1</sup> of dry matter) and proline (975 nmoles⋅g-1</sup> of fresh matter) were also recorded by this pair, with the lowest Na<sup>+</sup> contents (Leaves: 1.93 mg⋅g-1</sup>;Roots: 0.96 mg⋅g-1</sup> of dry matter). For the Mongal variety, at [NaCl 140 mM], the highest frequencies (50.36%), intensities (35.14%) and relative mycorrhizal dependencies (43.95%) were obtained thanks to inoculation with Rhizophagus fasciculatus. The highest survival rates (59%) and aerial (2.58 g) and root (0.79 g) dry weights were also obtained with this symbiotic couple. The contents of K<sup>+</sup> (Leaves: 6.1 mg⋅g-1</sup>;Roots: 3.09 mg⋅g-1 </sup>of dry matter), P (Leaves: 12.49 mg⋅g-1</sup> of dry matter) and proline (942 nmoles⋅g-1</sup> of fresh matter) the most important and those in Na<sup>+</sup> the lowest (Leaves: 2.03 mg⋅g-1</sup>;Roots: 1.53 mg⋅g-1</sup> of dry matter) were also recorded for this same pair. Thus, the best fungal partner for the Lady Nema variety is C. etunicatum, followed by F. mosseae and R. fasciculatus, while for the Mongal variety it is R. fasciculatus, followed by C. etunicatum and F. mosseae.
文摘In sub-Saharan Africa, Sorghum (Sorghum bicolor) is an important cereal for both human being and animals. Unfortunately, its production is confronted to soils with deficiency of phosphorus. Traditional use of mineral phosphate on this culture fertilization is expensive and may cause contamination. It is thus necessary to seek more efficient and economic reasonable techniques to improve sorghum growth. Arbuscular mycorrhizal fungi (AMF) constitute a reference for phosphorus improvement and plant nutrition. This study aimed to investigate the effects of AMF strains (Rhizophagus irregulare, Glomus aggregatum, G. mosseae) on growth of sorghum cultivated in greenhouse on Sangalkam soil (Senegal) sterilized with or without Tilemsi natural phosphate (PNT). The phosphorus can represent until 0.2% of the dry weight of the plant. Two fertilizers were used separately and together to doses of 20 g by strain, 100 mg and 200 mg of PNT. The experiment lasted for 120 d. Results showed that mycorrhizal colonization intensity varied between 40% and 80% for all treatments. AMF inoculation increased sorghum plant height and biomass, regardless of PNT amendment. The inoculation permits to bring strain of AMF that intervene efficiently in the transportation and the availability of phosphorus for the plant.
文摘In arid and semi-arid regions, the growth and development of cultivated plants, especially tomato (Solanum lycopersicum L.), are severely limited by water deficit. Thus, to cope with this constraint, the plant establishes symbiotic relationships with arbuscular mycorrhizal fungi (AMF) in the soil whose extension of the hyphae allows a better and deeper exploration;this notably improves the hydromineral nutrition of the plant. Therefore, the choice of fungal partner becomes crucial for the establishment of a crop in water-deficient soil. In this context, the contribution of AMF to the water stress tolerance of two varieties of tomato plants was assessed under semi-controlled conditions. Parameters, such as the mycorrhizal frequency, intensity of mycorrhization, relative mycorrhizal dependency, growth, and biochemical parameters (carbon, nitrogen, phosphorus, and proline contents) of plants subjected to three levels of water stress (T100, T70, and T30), were evaluated. The highest frequencies and intensities of mycorrhization and relative mycorrhizal dependencies were obtained with plants of the Xewel variety inoculated with Rhizophagus fasciculatus (F: 95.24%, 88.35%, and 13.64%;M: 40.52%, 37.52%, and 11.22%;D: 23.7%, 54.4%, and 78.82%) and in those of the Lady Nema variety inoculated with Claroideoglomus etunicatum (F: 95.12%, 87.01%, and 15.25%;M: 40.66%, 37.99%, and 11.42%;D: 19.27%, 57.01%, and 70.98%), respectively at water regimes of T100, T70 and T30. These same symbiotic couples recorded, at T30, the best survival rates (+ 40%) and the higher aerial (77% and 74%) and root dry weights (80% and 59%). Plants of the Xewel variety inoculated with R. fasciculatus recorded the highest contents of carbon (T70: 30.59% and T30: 21.55%) and phosphorus (T70: 0.18% and T30: 0.17%). Plants of the Lady Nema variety recorded the highest nitrogen contents with 3.51% and 3.20%, respectively at T70 and T30. Plants of the Lady Nema variety, inoculated with C. etunicatum, also recorded the highest proline contents (572.25, 739.44, and 1165 nmoles•g<sup>−1</sup> of fresh material), followed by those of the Xewel variety inoculated with R. fasciculatus (580.36, 763.65, and 1112.11 nmoles•g<sup>−1</sup> of fresh matter), respectively at T100, T70, and T30. For the Lady Nema variety, the best fungal partner is C. etunicatum, followed by R. fasciculatus and, finally, Funneliformis mosseae. However, for the plants of the Xewel variety, R. fasciculatus is the most efficient, followed by F. mosseae and C. etunicatum. This suggests that, in tomatoes, the efficiency of mycorrhizal symbiosis under water stress conditions is not only dependent on the host plant but on both associated symbiotic partners. Hence, it is a need for screening to identify the best symbiotic couples in a stressful environment.
文摘<p align="justify"> <span style="font-family:Verdana;">Soil salinization is one of the major causes of land degradation. In Senegal, this phenomenon continues to grow, making soils unsuitable for agriculture. To rehabilitate salty lands, one of the recommended strategies is the use of salt-tolerant plants. Among them, plants of </span><i><i><span style="font-family:Verdana;">Casuarinaceae</span></i></i><span style="font-family:Verdana;"> family form a relationship with symbiotic microorganisms such as arbuscular mycorrhizal fungi and nitrogen fixing bacteria. It has been shown that symbiotic microorganisms play an important role in the establishment of tolerant plants in saline conditions (Djighaly </span><i><i><span style="font-family:Verdana;">et al</span></i></i><span style="font-family:Verdana;">., 2018). They improve plant performance and reduce transplant shock under salt stress conditions (Diagne </span><i><i><span style="font-family:Verdana;">et al</span></i></i><span style="font-family:Verdana;">., 2014). These microorganisms can be used as biofertilizers. However, inocula containing symbiotic microorganisms are either too expensive or unavailable in many developing countries. The aim of this study is to test alternatively affordable and low-tech solutions to promote symbiotic interactions such as Casuarina crushed nodule, Casuarina rhizosphere soil and Casuarina leaves compost that may contain symbiotic microorganisms and also nutrients such as N and phosphorus. Two species of Casuarina (</span><i><i><span style="font-family:Verdana;">Casuarina equisetifolia</span></i></i><span style="font-family:Verdana;"> L. and </span><i><i><span style="font-family:Verdana;">Casuarina obesa</span></i></i><span style="font-family:Verdana;"> Miq.) were grown in the greenhouse on sterile soil to which an amendment was added (Casuarina crushed nodules, Casuarina Rhizospheric soil or Casuarina leaves compost). Plants were subjected to saline stress. After four months of cultivation, they were harvested and morphological and physiological parameters were determined. Results showed that inoculation with Casuarina crushed nodules, Casuarina rhizospheric soil and Casuarina leaves compost improved growth, total dry biomass, total chlorophyll and proline contents of </span><i><i><span style="font-family:Verdana;">C. equisetifolia</span></i></i><span style="font-family:Verdana;"> and </span><i><i><span style="font-family:Verdana;">C. obesa</span></i></i><span style="font-family:Verdana;"> plants in salt stress condition. These positive effects were more important in </span><i><i><span style="font-family:Verdana;">C. obesa</span></i></i><span style="font-family:Verdana;"> plants amended with Casuarina leaves compost. This study shows that Casuarina leaves compost can play an important role in the rehabilitation of saline soils by improving Casuarina trees performance in saline conditions.</span> </p>
文摘Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".
文摘Water is the most abundant liquid on the surface of the earth. It is a liquid whose properties are quite surprising, both as a pure liquid and as a solvent. Water is a very cohesive liquid: its melting and vaporization temperatures are very high for a liquid that is neither ionic nor metallic, and whose molar mass is low. Thus, water remains liquid at atmospheric pressure up to 100C while similar molecules such as H2S, H2Se, H2Te for example would give a vaporization temperature close to 80C. This cohesion is in fact ensured by hydrogen bonds between water molecules. This type of bonds between neighboring molecules, hydrogen bonds, is quite often found in chemistry [1] [2]. Any change in the state of aggregation of a substance occurs with the absorption or release of a certain amount of latent heat of transformation. Latent heat of fusion, vaporization or sublimation is the ratio of the energy supplied as heat to the mass of the substance that is melted, vaporized or sublimated. As a result of the reversibility of the processes, the fusion heat is equal to the heat released in the reverse process: crystallization and solidification heat. And likewise the heat of vaporization is equal to the heat of condensation. This equality of heat is often used to determine experimentally either of these quantities. There are two main measurement methods: 1) Direct measurement using the calorimeter, 2) Indirect measure based on the use of the VantHoff relationship. The objective of this work is to measure the latent heat of water vaporization and verify the compatibility of the experimental values with the values given by the tables using the indirect method.
文摘The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods.
文摘The objective of this study was to evaluate the differences in composition among six brands of conventional soybean and six genetically modified cultivars (GM). We focused on the isoflavones profile and mineral content questioning the substantial equivalence between conventional and GM organisms. The statement of compliance label for conventional grains was verified for the presence of genetic modified genes by real time polymerase chain reaction (PCR). We did not detect the presence of the 35S promoter in commercial samples, indicating the absence of transgene insertion. For mineral analysis, we used the method of inductively coupled plasma-optical emission spectrometry (ICP-OES). Isoflavones quantification was performed by high performance liquid chromatography (HPLC). The results showed no statistical difference between the conventional and transgenic soybean groups concerning isoflavone content and mineral composition. The concentration of potassium, the main mineral component of soy, was the highest in conventional soybeans compared to that in GM soy, while GM samples presented the highest concentrations of iron.
基金funded by Higher Education commission,Pakistan(HEC),Grant No.NRPU649.
文摘Proteintyrosine phosphatase 1B(PTP1B)inhibitionis consideredas a potentialtherapeuticfor the treatmentof cancer,type2 diabetes,andobesity.Inour presentwork,weinvestigatedtheanti-diabeticpotentialof8-hydroxydiospyrin(8-HDN)from D.lotus against the PTP1B enzyme.It showed significant inhibitory activity of PTP1B with an IC 50 value of 18.37±0.02μM.A detailed molecular docking study was carried out to analyze the binding orientation,binding energy,and mechanism of inhibition.A comparative investigation of 8-HDN in the catalytic,as well as the allosteric site of PTP1B,was performed.Binding energy data showed that compound 8-HDN is more selective for the allosteric site and hence avoids the problems associated with catalytic site inhibition.The inhibition mechanism of 8-HDN can be further investigated as an active lead compound against PTP1B by using in vitro and in vivo models.
文摘Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications.