A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear pro...A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear properties of the surface layer in the SMATed and annealed Fe samples were measured by means of nanoindentation and nanoscratch tests, respectively. Experimental results showed that the hardness of the surface layer in the SMATed Fe sample increased evidently due to the grain refinement. The elastic moduli of the surface layers in the SMATed and annealed Fe samples were unchanged, independent of grain size in the present grain size regime. Compared with the original Fe sample, the wear resistance enhanced and the coefficient of friction decreased in the surface layer of the SMATed Fe sample.展开更多
Interpenetrating phase composites (IPCs) are a new class of composite materials with improved combinations of mechanical and physical properties. This study was performed on a new type of IPC called metal porous polym...Interpenetrating phase composites (IPCs) are a new class of composite materials with improved combinations of mechanical and physical properties. This study was performed on a new type of IPC called metal porous polymer composite (MPPC) with an interpenetrating network structure. Aluminum-polypropylene (AI-PE) and Aluminum-epoxy resin (Al-Ep) composites were produced by infiltrating the polymer in the aluminum foam. The composite microstructures were characterized using SEM observation. The compressive behavior and energy absorption characteristics of MPPC were investigated and compared with the aluminum foams. The compressive modulus of composite was compared with the VOIGT-REUSS bounds and HASHIN-SHTRIKMAN (H-S) bounds models. The experimental modulus of compressive tests falls well within the theoretical models.展开更多
The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the di...The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the discs maintained the original coarse-grained condition. The gaseous nitriding was subsequently carried out at three different temperatures: 460, 500 and 560℃. The compound layer growth and diffusion behavior were then studied. It was revealed that SNC pretreatment greatly enhances both diffusion coefficient D and surface reaction rate. As a result, nitriding time could be reduced to the half. It was also found that the growth of compound layer with nitriding time conformed with parabolic relationship from the start of nitriding process in the SNCed samples.展开更多
The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation ...The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.展开更多
The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this...The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, l.SCr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 urn thick and consisted of the intermetallic compound FeCr with an average grain size of 25±10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.展开更多
In this paper, a concept of surface nanocrystallization (SNC) of metallic materials is introduced. Three types of SNC processes are classified. Different SNC mechanisms and possible techniques for SNC are discussed wi...In this paper, a concept of surface nanocrystallization (SNC) of metallic materials is introduced. Three types of SNC processes are classified. Different SNC mechanisms and possible techniques for SNC are discussed with emphasis on mechanically induced surface self-nanocrystallization. Further development and prospects are addressed with respect to the properties and behaviors of the materials with a nanocrystalline surface. Enhancement of the behavior of the engineering materials by means of the SNC technology and its industrial application possibilities are analyzed.展开更多
Hole-drilling method is one of the most convenient methods for engineering residual ment data, hole-drilling technique can be used to solve non-uniform residual stress problems, both (MIIHD) for non-uniform residual s...Hole-drilling method is one of the most convenient methods for engineering residual ment data, hole-drilling technique can be used to solve non-uniform residual stress problems, both (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation.An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented.Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.展开更多
The aim of this study is to show the interest of the mechanical and dynamical properties of glass-flax hybrid composites.Therefore,various staking sequences of glass-flax hybrid composites were manufactured and tested...The aim of this study is to show the interest of the mechanical and dynamical properties of glass-flax hybrid composites.Therefore,various staking sequences of glass-flax hybrid composites were manufactured and tested in free vibrations.The damping coefficients were identified by fitting the experimental responses of free-free bending vibrations.The obtained results show that the staking sequences and the position of flax fiber layers in the hybrid composites changed the properties,so a classification of different stacking sequences was established.In fact,the hybrid laminate made of two glass external layers placed on both sides of four flax layers is very interesting in term of its mechanical and damping properties.Indeed,it showed better specific bending modulus and loss factor than glass composites with proportions of 31 and 39%,respectively.A study of a structure of this composite has been made to validate the obtained results.展开更多
This paper proposes a modified Kelvin model for high mechanical property open-cell metal foams and investigates its application in thermal simulations. The thermal conductivity is simulated based on the steady state m...This paper proposes a modified Kelvin model for high mechanical property open-cell metal foams and investigates its application in thermal simulations. The thermal conductivity is simulated based on the steady state method and the results are consistent with experimental values. The melting process of phase change materials (PCMs) in Kelvin model and its modified model is numerically investigated under a temperature constant heat resource. By detecting the temperature variations, it shows that the metal foam greatly improves the heat transfer in energy storage systems. Besides, the comparison of the melting process in two foam models indicates that the systems based on high mechanical property metal foams have a shorter melting time. The melting process of paraffin in modified Kelvin metal foam models with three different porosities (65%, 70% and 75%) are numerically analyzed and compared.展开更多
In this work,SMAT(surface mechanical attrition treatment)was performed on Ti6Al4V.Plasma nitriding of the SMATed samples was investigated in comparison with coarse-grained samples.The samples were characterized using ...In this work,SMAT(surface mechanical attrition treatment)was performed on Ti6Al4V.Plasma nitriding of the SMATed samples was investigated in comparison with coarse-grained samples.The samples were characterized using optic microscope,SEM,TEM and Vickers microhardness tester.The results showed that a significantly thicker compound layer with higher hardness was obtained for the SMATed samples when compared with un-SMATed samples after nitriding.Corrosion resistance of Ti6Al4V in a Ringer’s solution was studied by electrochemical techniques including open circuit potential measurement,potentiodynamic polarization and EIS(electrochemical impedance spectroscopy).Overall,our results identified the beneficial impacts of the duplex SMAT/nitriding treatment on corrosion behaviour of Ti6Al4V.Wear tests were also performed on a ball-on-disc tribometer where the treated samples were rubbed against a 6 mm diameter alumina ball under a normal load of 5 N using Ringer’s solution as lubricant media.The friction coefficient of the SMATed and nitrided samples was reduced compared to the untreated samples.Wear rates demonstrated that SMAT combined with nitriding improved wear resistance of Ti6Al4V alloy.展开更多
基金Financial support from the National Natural Science Foundation of China,the Ministry of Science and Technology of China(Grant G1999064505)NEDO International Joint Research Grant Program(01MB5)Ministry of Research of France(Grant 2001882,CPER EN2040)is acknowledged.
文摘A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear properties of the surface layer in the SMATed and annealed Fe samples were measured by means of nanoindentation and nanoscratch tests, respectively. Experimental results showed that the hardness of the surface layer in the SMATed Fe sample increased evidently due to the grain refinement. The elastic moduli of the surface layers in the SMATed and annealed Fe samples were unchanged, independent of grain size in the present grain size regime. Compared with the original Fe sample, the wear resistance enhanced and the coefficient of friction decreased in the surface layer of the SMATed Fe sample.
基金Project supported by Conseil General de 1'Aube (district grant) and the European Social Fund
文摘Interpenetrating phase composites (IPCs) are a new class of composite materials with improved combinations of mechanical and physical properties. This study was performed on a new type of IPC called metal porous polymer composite (MPPC) with an interpenetrating network structure. Aluminum-polypropylene (AI-PE) and Aluminum-epoxy resin (Al-Ep) composites were produced by infiltrating the polymer in the aluminum foam. The composite microstructures were characterized using SEM observation. The compressive behavior and energy absorption characteristics of MPPC were investigated and compared with the aluminum foams. The compressive modulus of composite was compared with the VOIGT-REUSS bounds and HASHIN-SHTRIKMAN (H-S) bounds models. The experimental modulus of compressive tests falls well within the theoretical models.
文摘The behavior of gaseous nitriding on the surface nanocrystallized (SNCed) steel was investigated. The mild steel discs were SNCed on one side by using the method of ultrasonic shot peening. The opposite side of the discs maintained the original coarse-grained condition. The gaseous nitriding was subsequently carried out at three different temperatures: 460, 500 and 560℃. The compound layer growth and diffusion behavior were then studied. It was revealed that SNC pretreatment greatly enhances both diffusion coefficient D and surface reaction rate. As a result, nitriding time could be reduced to the half. It was also found that the growth of compound layer with nitriding time conformed with parabolic relationship from the start of nitriding process in the SNCed samples.
基金supported by NSF of China(Grants No.50021101)Ministry of Science&Technology of China(G1999064505).
文摘The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.
基金supported by the National Natural Science Foundation of Chinathe Chinese Academy of Sciences
文摘The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, l.SCr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 urn thick and consisted of the intermetallic compound FeCr with an average grain size of 25±10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.
文摘In this paper, a concept of surface nanocrystallization (SNC) of metallic materials is introduced. Three types of SNC processes are classified. Different SNC mechanisms and possible techniques for SNC are discussed with emphasis on mechanically induced surface self-nanocrystallization. Further development and prospects are addressed with respect to the properties and behaviors of the materials with a nanocrystalline surface. Enhancement of the behavior of the engineering materials by means of the SNC technology and its industrial application possibilities are analyzed.
文摘Hole-drilling method is one of the most convenient methods for engineering residual ment data, hole-drilling technique can be used to solve non-uniform residual stress problems, both (MIIHD) for non-uniform residual stress measurement is introduced. Three dimensional finite element model is constructed by ABAQUS to obtain the coefficients for the residual stress calculation.An experimental system including real-time measurement, automatic data processing and residual stresses calculation is established. Two applications for non-uniform in-depth residual stress of surface nanocrystalline material and non-uniform in-plane residual stress of friction stir welding are presented.Experimental results show that MIIHD is effective for both non-uniform in-depth and in-plane residual stress measurements.
文摘The aim of this study is to show the interest of the mechanical and dynamical properties of glass-flax hybrid composites.Therefore,various staking sequences of glass-flax hybrid composites were manufactured and tested in free vibrations.The damping coefficients were identified by fitting the experimental responses of free-free bending vibrations.The obtained results show that the staking sequences and the position of flax fiber layers in the hybrid composites changed the properties,so a classification of different stacking sequences was established.In fact,the hybrid laminate made of two glass external layers placed on both sides of four flax layers is very interesting in term of its mechanical and damping properties.Indeed,it showed better specific bending modulus and loss factor than glass composites with proportions of 31 and 39%,respectively.A study of a structure of this composite has been made to validate the obtained results.
文摘This paper proposes a modified Kelvin model for high mechanical property open-cell metal foams and investigates its application in thermal simulations. The thermal conductivity is simulated based on the steady state method and the results are consistent with experimental values. The melting process of phase change materials (PCMs) in Kelvin model and its modified model is numerically investigated under a temperature constant heat resource. By detecting the temperature variations, it shows that the metal foam greatly improves the heat transfer in energy storage systems. Besides, the comparison of the melting process in two foam models indicates that the systems based on high mechanical property metal foams have a shorter melting time. The melting process of paraffin in modified Kelvin metal foam models with three different porosities (65%, 70% and 75%) are numerically analyzed and compared.
文摘In this work,SMAT(surface mechanical attrition treatment)was performed on Ti6Al4V.Plasma nitriding of the SMATed samples was investigated in comparison with coarse-grained samples.The samples were characterized using optic microscope,SEM,TEM and Vickers microhardness tester.The results showed that a significantly thicker compound layer with higher hardness was obtained for the SMATed samples when compared with un-SMATed samples after nitriding.Corrosion resistance of Ti6Al4V in a Ringer’s solution was studied by electrochemical techniques including open circuit potential measurement,potentiodynamic polarization and EIS(electrochemical impedance spectroscopy).Overall,our results identified the beneficial impacts of the duplex SMAT/nitriding treatment on corrosion behaviour of Ti6Al4V.Wear tests were also performed on a ball-on-disc tribometer where the treated samples were rubbed against a 6 mm diameter alumina ball under a normal load of 5 N using Ringer’s solution as lubricant media.The friction coefficient of the SMATed and nitrided samples was reduced compared to the untreated samples.Wear rates demonstrated that SMAT combined with nitriding improved wear resistance of Ti6Al4V alloy.