Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama...Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.展开更多
Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challe...Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challenges.In this work,we demonstrate for the firs time that the coherent radiation farfiel patterns from laser–foil interactions can serve as an in situ,real-time,and easy-to-implement diagnostic for an ultraintense laser focus.The laser-driven electron sheets,curved by the spatially varying laser fiel and leaving the targets at nearly the speed of light,produce doughnut-shaped patterns depending on the shapes of the focal spot and the absolute laser intensities.Assisted by particle-in-cell simulations,we can achieve measurements of the intensity and the focal spot,and provide immediate feedback to optimize the focal spots for extremely high intensity.展开更多
High-power fiber oscillators have been widely used in industrial processing,high-end manufacturing,biomedicine and so on.However,as the output power increase,stimulated Raman scattering(SRS)becomes the main factor lim...High-power fiber oscillators have been widely used in industrial processing,high-end manufacturing,biomedicine and so on.However,as the output power increase,stimulated Raman scattering(SRS)becomes the main factor limiting the performance improvement of fiber oscillators.In this paper,a chirped and tilted fiber Bragg grating(CTFBG)is used to suppress SRS in a high-power fiber oscillator.The CTFBG is fabricated on one side of a low-reflectivity FBG(LRFBG)to form a composite FBG by the femtosecond laser phase mask technology,enhancing the compactness and stability of the fiber oscillator system.SRS is effectively suppressed by CTFBG with a Raman suppression depth and width of 16 dB and 86 nm,respectively,and the Raman light ratio in the output power decreases by an order of magnitude.The output power of fiber oscillators is increased to 9 kW,which is the highest power for fiber oscillators with SRS suppression using CTFBGs,to the best of our knowledge.This work demonstrates that the composite FBG can effectively improve the performance of high-power fiber oscillators,which provides new insights into the development of fiber laser technology.展开更多
We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecon...We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecond laser pulse to generate strong magnetic fields for focusing protons.A pair of dipole magnets and apertures are employed to further filter protons with large divergences and low energies.Our numerical studies combine particle-in-cell simulations for laser-plasma interaction to generate high-energy monoenergetic proton beams,finite element analysis for evaluating the magnetic field distribution inside the coil,and MonteCarlo simulations for beam transport and energy deposition.Our results show that with this design,a spread-out Bragg peak in a range of several centimeters to a deep-seated tumor with a dose of approximately 16.5 cGy and fluctuation around 2% can be achieved.The instantaneous dose rate reaches up to 10^(9)Gy/s,holding the potential for future FLASH radiotherapy research.展开更多
A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation...A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence.展开更多
High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtos...High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtosecond(fs)laser-induced air filament for high-peak laser transmission over long distances,femtosecond(fs)laser-induced air filaments are combined with a millisecond(ms)laser to form an fs-ms CPL,enhancing the efficiency of sapphire ablation through synchronized spatial-temporal focusing.Experimental results show that ablation efficiency increases with the ms peak power and duty ratio.Excessive thermal stress leads to fragmentation of the sapphire when the ms duty ratio is over 30%at the peak power of 800 W,or when the peak power is over 500 W at a duty ratio of 100%.Also,the mechanism of high-efficiency damage is revealed through in-situ high-speed imaging.According to it,the ablation process went through 4 stages within 1.5 ms:defect-creating,melting and ablation,spattering,and fragmentation.Finally,the equivalent ablation efficiency of the fs-ms CPL is as high as 1.73×10^(7)μm^(3)/J,about 28 times higher compared to the fs laser only.The CPL damage method explored in this paper can provide theoretical guidance for efficient laser damage of transparent materials.展开更多
The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide g...The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide gas jet,utilizing magnetic vortex acceleration enhanced by a laser-driven plasma bubble.When a petawatt laser pulse passes through a pre-polarized gas jet,a bubble-like ultra-nonlinear plasma wave is formed.As a portion of the particles constituting this wave,background protons are swept by the acceleration field of the bubble and oscillate significantly along the laser propagation axis.Some of the pre-accelerated protons in the plasma wave are trapped by the acceleration field at the rear side of the target.This acceleration field is intensified by the transverse expansion of the laser-driven magnetic vortex,resulting in energetic polarized proton beams.The spin of energetic protons is determined by their precession within the electromagnetic field,which is described using the Thomas-Bargmann-Michel-Telegdi equation in analytical models and particle-in-cell simulations.Multidimensional simulations reveal that monoenergetic proton beams with an energy of hundreds of MeV,a beam charge of hundreds of pC,and a beam polarization of tens of percent can be produced at laser powers of several petawatts.Such laser-driven polarized proton beams have promise for application in polarized beam colliders,where they can be utilized to investigate particle interactions and to explore the properties of matter under extreme conditions.展开更多
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-...The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.展开更多
Ytterbium(Yb)-based mode-locked fiber lasers have undergone significant development and found widespread applications owing to their high efficiency,compact size,and low cost.However,these lasers typically operate wit...Ytterbium(Yb)-based mode-locked fiber lasers have undergone significant development and found widespread applications owing to their high efficiency,compact size,and low cost.However,these lasers typically operate within the 1030 to 1080 nm range,and expanding their operational wavelength is crucial for applications across various fields.We present the direct generation of a mode-locked laser at 1120.06 nm using an all-polarization-maintaining structure,establishing the longest wavelength reported to date for Yb-doped fiber-based mode-locked lasers.A stable picosecond pulse laser at 1120 nm was realized by combining high-concentration Yb-doping and phase-biasing technology within a figure-9 cavity configuration.The laser delivers a pulse duration of 6.20 ps,a spectral width of 0.19 nm centered at 1120.06 nm,and a repetition rate of 21.52 MHz and reaches a maximum output power of 1.39 W via a double-cladding Yb fiber power amplifier in a master oscillator power amplifier configuration.Furthermore,we present a theoretical investigation of the laser performance,with simulation results aligning well with experimental findings.In addition,a 560.06-nm ultrafast yellow-green laser was generated through frequency doubling in a lithium triborate crystal.We present an approach for long-wavelength Yb-doped mode-locked lasers,with the potential to advance the development and application of Yb-based fiber lasers.展开更多
The rapid advancements of ultrafast intense laser technology have opened new avenues for investigating entanglement in laser-induced systems. However, the application of these advances in quantum technology requires a...The rapid advancements of ultrafast intense laser technology have opened new avenues for investigating entanglement in laser-induced systems. However, the application of these advances in quantum technology requires a reliable and universally applicable method for enhancing and regulating entanglement. Here we demonstrate how a few-cycle intense laser field can significantly enhance the degree of entanglement compared to its multi-cycle counterpart, using the example of electron–electron entanglement of orbital angular momentum(OAM) states in recollision-excitation non-sequential double ionization of Ar atoms. By confining the ionization dynamics to a specific narrow time window, the few-cycle pulse purifies the electron trajectories, thereby ensuring high coherence between entangled OAM channels and enhancing entanglement. Furthermore, the degree of entanglement can be efficiently modulated by varying the carrier envelope phase of the few-cycle laser pulse, which is achieved by altering the population across OAM channels. Optimizing coherence through electron trajectory purification with a designed specific temporal waveform of laser field provides a general pathway for enhancing entanglement in laser-induced systems.展开更多
We present a systematic experimental investigation of temporal contrast enhancement techniques for petawatt(PW)-class Ti:sapphire lasers utilizing a double chirped-pulse amplification(CPA)architecture.Particular atten...We present a systematic experimental investigation of temporal contrast enhancement techniques for petawatt(PW)-class Ti:sapphire lasers utilizing a double chirped-pulse amplification(CPA)architecture.Particular attention is given to pre-pulses induced by post-pulses originating in the first CPA stage.One conventional and two advanced pulse-cleaning strategies are quantitatively evaluated:(i)a saturable absorber(SA),(ii)a femtosecond optical parametric amplifier(OPA)employing the idler pulse in a two-stage configuration,and(iii)sum-frequency generation(SFG)combining the signal and idler pulses from the OPA.All techniques are implemented and evaluated using the J-KAREN-P laser system with an output energy of about 20 J.To the best of our knowledge,this is the first report to directly and systematically compare the contrast of pre-pulses originating from the first CPA stage under identical experimental conditions in a high-energy PW-class laser facility.The results offer crucial insights into contrast optimization for future high-field applications.展开更多
Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme...Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments.These dynamic high-pressure states are relevant to a wide range of phenomena,including planetary formation,asteroid impacts,spacecraft shielding,and inertial confinement fusion.The integration of advanced X-ray diffraction experimental techniques,from laser-induced X-ray sources and X-ray free-electron lasers,and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions.This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide,concentrating on dynamical phase transitions,metastable and transient states,the influence of crystal orientation,microstructural changes,and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.展开更多
Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.H...Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.展开更多
In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction effi...In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis.展开更多
Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential a...Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.展开更多
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ...Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed.展开更多
High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking...High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking suppression mechanism and phase formation in these composites are not clarified.In this work,microstructure evolution and mechanical performance of the LPBF-fabricated Ti/Ce co-modified 2195 are investigated to reveal their cracking suppression and strengthening mechanisms.The results show that apparent grain refinement of the composites is ascribed to high supercooling from rapid formation of constitutional supercooling zone in front of solid–liquid interfaces by high-Q-value Ti solute,and heterogeneous nucleation of in situ formed Al3Ti and Al11Ce3precipitates.Their synergistic interactions promote formation of fine equiaxed grains and thus inhibit crack initiation.The composites exhibit high microhardness of 100±5HV0.2,nano-hardness of 1.6±0.1 GPa and elastic modulus of 97±3 GPa,where the elastic modulus increases by 27%and 31%compared to those of LPBF-processed and conventionally manufactured 2195 alloys,respectively.A tensile strength of 336 MPa and an elongation of 3%are obtained from in-situ synchrotron X-ray diffraction measurement.The improved properties are derived from grain refinement and Orowan strengthening.Based on the optimal processing parameter and composition,a bracket component filled with lattice structures is designed and manufactured with good manufacturing quality and processing accuracy.展开更多
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ...Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed...We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4.展开更多
基金supports from National Natural Science Foundation of China(Grant No.52105498)The science and technology innovation Program of Hunan Province(Grant No.2021RC3074)+2 种基金Advanced Laser Technology Laboratory of Anhui Province(AHL2022KF04)National Key R&D Program of China(Grant No.2023YFB14605500)Changsha Natural Science Foundation(kq2402089).
文摘Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.
基金supported by the Guangdong High Level Innovation Research Institute(Grant No.2021B0909050006)the National Grand Instrument Project(Grant No.2019YFF01014402)+1 种基金the National Natural Science Foundation of China(Grant No.12205008)support from the National Science Fund for Distinguished Young Scholars(Grant No.12225501)。
文摘Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challenges.In this work,we demonstrate for the firs time that the coherent radiation farfiel patterns from laser–foil interactions can serve as an in situ,real-time,and easy-to-implement diagnostic for an ultraintense laser focus.The laser-driven electron sheets,curved by the spatially varying laser fiel and leaving the targets at nearly the speed of light,produce doughnut-shaped patterns depending on the shapes of the focal spot and the absolute laser intensities.Assisted by particle-in-cell simulations,we can achieve measurements of the intensity and the focal spot,and provide immediate feedback to optimize the focal spots for extremely high intensity.
基金supported by Science and Technology Innovation Program of Hunan Province(2021RC4027).
文摘High-power fiber oscillators have been widely used in industrial processing,high-end manufacturing,biomedicine and so on.However,as the output power increase,stimulated Raman scattering(SRS)becomes the main factor limiting the performance improvement of fiber oscillators.In this paper,a chirped and tilted fiber Bragg grating(CTFBG)is used to suppress SRS in a high-power fiber oscillator.The CTFBG is fabricated on one side of a low-reflectivity FBG(LRFBG)to form a composite FBG by the femtosecond laser phase mask technology,enhancing the compactness and stability of the fiber oscillator system.SRS is effectively suppressed by CTFBG with a Raman suppression depth and width of 16 dB and 86 nm,respectively,and the Raman light ratio in the output power decreases by an order of magnitude.The output power of fiber oscillators is increased to 9 kW,which is the highest power for fiber oscillators with SRS suppression using CTFBGs,to the best of our knowledge.This work demonstrates that the composite FBG can effectively improve the performance of high-power fiber oscillators,which provides new insights into the development of fiber laser technology.
基金supported by the National Key R&D Program of China(Nos.2022YFA1603200 and 2022YFA1603201)National Natural Science Foundation of China(Nos.12135001,11921006,12475243 and 11825502)+1 种基金Strategic Priority Research Program of CAS(No.XDA25050900)support from the National Natural Science Funds for Distinguished Young Scholar(No.11825502)。
文摘We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecond laser pulse to generate strong magnetic fields for focusing protons.A pair of dipole magnets and apertures are employed to further filter protons with large divergences and low energies.Our numerical studies combine particle-in-cell simulations for laser-plasma interaction to generate high-energy monoenergetic proton beams,finite element analysis for evaluating the magnetic field distribution inside the coil,and MonteCarlo simulations for beam transport and energy deposition.Our results show that with this design,a spread-out Bragg peak in a range of several centimeters to a deep-seated tumor with a dose of approximately 16.5 cGy and fluctuation around 2% can be achieved.The instantaneous dose rate reaches up to 10^(9)Gy/s,holding the potential for future FLASH radiotherapy research.
基金support from the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research,and Innovation(No.B05F650022),as well as from Chiang Mai University.
文摘A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence.
基金Project(52105498) supported by the National Natural Science Foundation of ChinaProject(2021RC3074) supported by the Science and Technology Innovation Program of Hunan Province,China+2 种基金Project(2023YFB4605500) supported by the National Key Research and Development Program of ChinaProject(AHL2022KF04) supported by the Advanced Laser Technology Laboratory of Anhui Province,ChinaProject(kq2402089) supported by the Changsha Natural Science Foundation,China。
文摘High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtosecond(fs)laser-induced air filament for high-peak laser transmission over long distances,femtosecond(fs)laser-induced air filaments are combined with a millisecond(ms)laser to form an fs-ms CPL,enhancing the efficiency of sapphire ablation through synchronized spatial-temporal focusing.Experimental results show that ablation efficiency increases with the ms peak power and duty ratio.Excessive thermal stress leads to fragmentation of the sapphire when the ms duty ratio is over 30%at the peak power of 800 W,or when the peak power is over 500 W at a duty ratio of 100%.Also,the mechanism of high-efficiency damage is revealed through in-situ high-speed imaging.According to it,the ablation process went through 4 stages within 1.5 ms:defect-creating,melting and ablation,spattering,and fragmentation.Finally,the equivalent ablation efficiency of the fs-ms CPL is as high as 1.73×10^(7)μm^(3)/J,about 28 times higher compared to the fs laser only.The CPL damage method explored in this paper can provide theoretical guidance for efficient laser damage of transparent materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075081 and 12404395)the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2024AFA038)Bin Liu acknowledges the support of Guangdong High Level Innovation Research Institute Project,Grant No.2021B0909050006.
文摘The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide gas jet,utilizing magnetic vortex acceleration enhanced by a laser-driven plasma bubble.When a petawatt laser pulse passes through a pre-polarized gas jet,a bubble-like ultra-nonlinear plasma wave is formed.As a portion of the particles constituting this wave,background protons are swept by the acceleration field of the bubble and oscillate significantly along the laser propagation axis.Some of the pre-accelerated protons in the plasma wave are trapped by the acceleration field at the rear side of the target.This acceleration field is intensified by the transverse expansion of the laser-driven magnetic vortex,resulting in energetic polarized proton beams.The spin of energetic protons is determined by their precession within the electromagnetic field,which is described using the Thomas-Bargmann-Michel-Telegdi equation in analytical models and particle-in-cell simulations.Multidimensional simulations reveal that monoenergetic proton beams with an energy of hundreds of MeV,a beam charge of hundreds of pC,and a beam polarization of tens of percent can be produced at laser powers of several petawatts.Such laser-driven polarized proton beams have promise for application in polarized beam colliders,where they can be utilized to investigate particle interactions and to explore the properties of matter under extreme conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375236 and 12135009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050100 and XDA25010100).
文摘The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.
基金supported by the National Natural Science Foundation of China(Grant No.92477133)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2025A1515011662)+1 种基金the National Natural Science Foundation of Fujian Province(Grant No.2025J01060)the National Natural Science Foundation of Xiamen(Grant No.3502Z202571016).
文摘Ytterbium(Yb)-based mode-locked fiber lasers have undergone significant development and found widespread applications owing to their high efficiency,compact size,and low cost.However,these lasers typically operate within the 1030 to 1080 nm range,and expanding their operational wavelength is crucial for applications across various fields.We present the direct generation of a mode-locked laser at 1120.06 nm using an all-polarization-maintaining structure,establishing the longest wavelength reported to date for Yb-doped fiber-based mode-locked lasers.A stable picosecond pulse laser at 1120 nm was realized by combining high-concentration Yb-doping and phase-biasing technology within a figure-9 cavity configuration.The laser delivers a pulse duration of 6.20 ps,a spectral width of 0.19 nm centered at 1120.06 nm,and a repetition rate of 21.52 MHz and reaches a maximum output power of 1.39 W via a double-cladding Yb fiber power amplifier in a master oscillator power amplifier configuration.Furthermore,we present a theoretical investigation of the laser performance,with simulation results aligning well with experimental findings.In addition,a 560.06-nm ultrafast yellow-green laser was generated through frequency doubling in a lithium triborate crystal.We present an approach for long-wavelength Yb-doped mode-locked lasers,with the potential to advance the development and application of Yb-based fiber lasers.
基金supported by the National Natural Science Foundation of China (Grant Nos.12274273and 12450402)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302101)。
文摘The rapid advancements of ultrafast intense laser technology have opened new avenues for investigating entanglement in laser-induced systems. However, the application of these advances in quantum technology requires a reliable and universally applicable method for enhancing and regulating entanglement. Here we demonstrate how a few-cycle intense laser field can significantly enhance the degree of entanglement compared to its multi-cycle counterpart, using the example of electron–electron entanglement of orbital angular momentum(OAM) states in recollision-excitation non-sequential double ionization of Ar atoms. By confining the ionization dynamics to a specific narrow time window, the few-cycle pulse purifies the electron trajectories, thereby ensuring high coherence between entangled OAM channels and enhancing entanglement. Furthermore, the degree of entanglement can be efficiently modulated by varying the carrier envelope phase of the few-cycle laser pulse, which is achieved by altering the population across OAM channels. Optimizing coherence through electron trajectory purification with a designed specific temporal waveform of laser field provides a general pathway for enhancing entanglement in laser-induced systems.
基金supported by the Japan Society for the Promotion of Science(Grant Nos.JP 15F15772,JP 16H03911,JP 16K05506,JP 19H00669,and JP 25H00621)the Precursory Research for Embryonic Science and Technology(Grant No.JPMJPR16P9)+1 种基金the MEXT Project(Grant No.JPMXS0450300221)the Japan Science and Technology Agency(Grant No.PRESTOJPMJPR16P9).
文摘We present a systematic experimental investigation of temporal contrast enhancement techniques for petawatt(PW)-class Ti:sapphire lasers utilizing a double chirped-pulse amplification(CPA)architecture.Particular attention is given to pre-pulses induced by post-pulses originating in the first CPA stage.One conventional and two advanced pulse-cleaning strategies are quantitatively evaluated:(i)a saturable absorber(SA),(ii)a femtosecond optical parametric amplifier(OPA)employing the idler pulse in a two-stage configuration,and(iii)sum-frequency generation(SFG)combining the signal and idler pulses from the OPA.All techniques are implemented and evaluated using the J-KAREN-P laser system with an output energy of about 20 J.To the best of our knowledge,this is the first report to directly and systematically compare the contrast of pre-pulses originating from the first CPA stage under identical experimental conditions in a high-energy PW-class laser facility.The results offer crucial insights into contrast optimization for future high-field applications.
基金supported by the National Natural Science Foundation of China under Grant Nos.12534013,12035002,12047561,and 12104507as well as the Science and Technology Innovation Program of Hunan Province under Grant No.2021RC4026+1 种基金T.Sekine gratefully acknowledges financial support from the Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments,China(Grant No.22dz2260800)from the Shanghai Science and Technology Committee,China(Grant No.22JC1410300).
文摘Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments.These dynamic high-pressure states are relevant to a wide range of phenomena,including planetary formation,asteroid impacts,spacecraft shielding,and inertial confinement fusion.The integration of advanced X-ray diffraction experimental techniques,from laser-induced X-ray sources and X-ray free-electron lasers,and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions.This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide,concentrating on dynamical phase transitions,metastable and transient states,the influence of crystal orientation,microstructural changes,and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.
文摘Additive manufacturing(AM)is an emerging customized three-dimensional(3D)functional product fabrication technology.It provides a higher degree of design freedom,reduces manufacturing steps,cost and production cycles.However,existing metallic component 3D printing techniques are mainly for the manufacture of single material components.With the increasing commercial applications of AM technologies,the need for 3D printing of more than one type of dissimilar materials in a single component increases.Therefore,investigations on multi-material AM(MMAM)emerge over the past decade.Lasers are currently widely used for the AM of metallic components where high temperatures are involved.Here we report the progress and trend in laser-based macro-and micro-scale AM of multiple metallic components.The methods covered in this paper include laser powder bed fusion,laser powder directed energy deposition,and laser-induced forward transfer for MMAM applications.The principles and process/material characteristics are described.Potential applications and challenges are discussed.Finally,future research directions and prospects are proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008)the Program for New Century ExcellentTalents in University,China (Grant No. NCET-10-0067)
文摘In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis.
基金funded by the European Union via the Euratom Research and Training Program(Grant Agreement No.101052200-EUROfusion)funding from LASERLAB-EUROPE(Grant Agreement No.871124,European Union’s Horizon 2020 Research and Innovation Program)+5 种基金supported in part by the United States Department of Energy under Grant No.DE-FG02-93ER40773We also acknowledge support from Grant No.PID2021-125389OA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Union and Unidad de Investigación Consolidada of Junta de Castilla y León UIC 167supported in part by the National Natural Science Foundation of China under Grant No.12375125the Fundamental Research Funds for the Central Universitiesthe support of the Czech Science Foundation through Grant No.GACR24-11398S.
文摘Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.
基金supported by the National Natural Science Foundation of China-Distinguished Young Scholars(No.52325407)the National Natural Science Foundation of China-Key Program(No.52234010)the Open Research Fund of the State Key Laboratory of Rolling and Automation,Northeastern University(No.2022RALKFKT004).
文摘Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.52205382,52225503)National Key Research and Development Program(No.2023YFB4603300)+3 种基金Key Research and Development Program of Jiangsu Province(Nos.BE2022069,BZ2024019)National Natural Science Foundation of China for Creative Research Groups(No.51921003)International Joint Laboratory of Sustainable Manufacturing,Ministry of Education and the Fundamental Research Funds for the Central Universities(NG2024014)Postgraduate Research&Practice Innovation Program of NUAA(xcxjh20230616)。
文摘High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking suppression mechanism and phase formation in these composites are not clarified.In this work,microstructure evolution and mechanical performance of the LPBF-fabricated Ti/Ce co-modified 2195 are investigated to reveal their cracking suppression and strengthening mechanisms.The results show that apparent grain refinement of the composites is ascribed to high supercooling from rapid formation of constitutional supercooling zone in front of solid–liquid interfaces by high-Q-value Ti solute,and heterogeneous nucleation of in situ formed Al3Ti and Al11Ce3precipitates.Their synergistic interactions promote formation of fine equiaxed grains and thus inhibit crack initiation.The composites exhibit high microhardness of 100±5HV0.2,nano-hardness of 1.6±0.1 GPa and elastic modulus of 97±3 GPa,where the elastic modulus increases by 27%and 31%compared to those of LPBF-processed and conventionally manufactured 2195 alloys,respectively.A tensile strength of 336 MPa and an elongation of 3%are obtained from in-situ synchrotron X-ray diffraction measurement.The improved properties are derived from grain refinement and Orowan strengthening.Based on the optimal processing parameter and composition,a bracket component filled with lattice structures is designed and manufactured with good manufacturing quality and processing accuracy.
基金supported by the National Key R&D Plan of China(No.2022YFB3705603)the National Natural Science Foundation of China(No.52101046)+1 种基金the Excellent Youth Overseas Project of National Science and Natural Foundation of China,the Baowu Special Metallurgy Cooperation Limited(No.22H010101336)the Medicine-Engineering Interdisciplinary Project of Shanghai Jiao Tong University(No.YG2022QN076).
文摘Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金Project supported by the National National Science Foundation of China(Grant Nos.12004262 and 62005184)the Natural Science Foundation of Top Talent of SZTU(Grant No.202024555101039)。
文摘We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz.Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior.A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator.The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns.The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24%in the main amplifier.The M^(2)parameter of the output laser is<1.4.