期刊文献+
共找到12,345篇文章
< 1 2 250 >
每页显示 20 50 100
Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets
1
作者 Shirui Xu Zhuo Pan +22 位作者 Ying Gao Jiarui Zhao Shiyou Chen Zhusong Mei Xun Chen Ziyang Peng Xuan Liu Yulan Liang Tianqi Xu Tan Song Qingfan Wu Yujia Zhang Zhipeng Liu Zihao Zhang Haoran Chen Qihang Han Jundong Shen Chenghao Hua Kun Zhu Yanying Zhao Chen Lin Xueqing Yan Wenjun Ma 《Matter and Radiation at Extremes》 2025年第2期16-23,共8页
Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challe... Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challenges.In this work,we demonstrate for the firs time that the coherent radiation farfiel patterns from laser–foil interactions can serve as an in situ,real-time,and easy-to-implement diagnostic for an ultraintense laser focus.The laser-driven electron sheets,curved by the spatially varying laser fiel and leaving the targets at nearly the speed of light,produce doughnut-shaped patterns depending on the shapes of the focal spot and the absolute laser intensities.Assisted by particle-in-cell simulations,we can achieve measurements of the intensity and the focal spot,and provide immediate feedback to optimize the focal spots for extremely high intensity. 展开更多
关键词 diagnosis focal spot peak intensity laser foil interactions laser fi coherent radiation farfiel patterns laser driven electron sheets experimental validation laser intensity focal spot coherent radiation
在线阅读 下载PDF
CW laser damage of ceramics induced by air filament
2
作者 Chuan Guo Kai Li +9 位作者 Zelin Liu Yuyang Chen Junyang Xu Zhou Li Wenda Cui Changqing Song Cong Wang Xianshi Jia Ji'an Duan Kai Han 《Opto-Electronic Advances》 2025年第7期23-35,共13页
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama... Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials. 展开更多
关键词 laser damage femtosecond laser CW laser combined pulse laser CERAMICS
在线阅读 下载PDF
Design of a compact beam transport system for laser-driven proton therapy
3
作者 Yangfan LI Xiaofei SHEN +1 位作者 Yilin YAO Bin QIAO 《Plasma Science and Technology》 2025年第1期1-6,共6页
We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecon... We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecond laser pulse to generate strong magnetic fields for focusing protons.A pair of dipole magnets and apertures are employed to further filter protons with large divergences and low energies.Our numerical studies combine particle-in-cell simulations for laser-plasma interaction to generate high-energy monoenergetic proton beams,finite element analysis for evaluating the magnetic field distribution inside the coil,and MonteCarlo simulations for beam transport and energy deposition.Our results show that with this design,a spread-out Bragg peak in a range of several centimeters to a deep-seated tumor with a dose of approximately 16.5 cGy and fluctuation around 2% can be achieved.The instantaneous dose rate reaches up to 10^(9)Gy/s,holding the potential for future FLASH radiotherapy research. 展开更多
关键词 intense laser-plasma interaction laser-driven ion acceleration laser-driven proton acceleration PARTICLE-IN-CELL proton radiotherapy
在线阅读 下载PDF
Design and start-to-end beam dynamics simulation of the first super-radiant THz free-electron laser source in Thailand
4
作者 Natthawut Chaisueb Sakhorn Rimjaem 《Nuclear Science and Techniques》 2025年第7期222-235,共14页
A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation... A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence. 展开更多
关键词 THz radiation THz free-electron laser Super-radiant free-electron laser Pre-bunched free-electron laser Beam dynamic simulation Femtosecond electron bunches
在线阅读 下载PDF
Millisecond laser processing of sapphire assisted by femtosecond laser-induced air filament
5
作者 YI Zhao-xi JIA Xian-shi +8 位作者 CHEN Yu-yang XU Jun-yang GUO Chuan LI Kai WANG Cong LI Zhou HAN Kai MA Zhuang DUAN Ji-an 《Journal of Central South University》 2025年第9期3272-3284,共13页
High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtos... High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtosecond(fs)laser-induced air filament for high-peak laser transmission over long distances,femtosecond(fs)laser-induced air filaments are combined with a millisecond(ms)laser to form an fs-ms CPL,enhancing the efficiency of sapphire ablation through synchronized spatial-temporal focusing.Experimental results show that ablation efficiency increases with the ms peak power and duty ratio.Excessive thermal stress leads to fragmentation of the sapphire when the ms duty ratio is over 30%at the peak power of 800 W,or when the peak power is over 500 W at a duty ratio of 100%.Also,the mechanism of high-efficiency damage is revealed through in-situ high-speed imaging.According to it,the ablation process went through 4 stages within 1.5 ms:defect-creating,melting and ablation,spattering,and fragmentation.Finally,the equivalent ablation efficiency of the fs-ms CPL is as high as 1.73×10^(7)μm^(3)/J,about 28 times higher compared to the fs laser only.The CPL damage method explored in this paper can provide theoretical guidance for efficient laser damage of transparent materials. 展开更多
关键词 femtosecond laser combined pulse laser laser damage SAPPHIRE
在线阅读 下载PDF
Enhanced MVA of polarized proton beams via PW laser-driven plasma bubble
6
作者 Zhikun Zou Gan Guo +4 位作者 Meng Wen Bin Liu Xue Yan YangjiéLiu Luling Jin 《Matter and Radiation at Extremes》 2025年第3期36-45,共10页
The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide g... The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide gas jet,utilizing magnetic vortex acceleration enhanced by a laser-driven plasma bubble.When a petawatt laser pulse passes through a pre-polarized gas jet,a bubble-like ultra-nonlinear plasma wave is formed.As a portion of the particles constituting this wave,background protons are swept by the acceleration field of the bubble and oscillate significantly along the laser propagation axis.Some of the pre-accelerated protons in the plasma wave are trapped by the acceleration field at the rear side of the target.This acceleration field is intensified by the transverse expansion of the laser-driven magnetic vortex,resulting in energetic polarized proton beams.The spin of energetic protons is determined by their precession within the electromagnetic field,which is described using the Thomas-Bargmann-Michel-Telegdi equation in analytical models and particle-in-cell simulations.Multidimensional simulations reveal that monoenergetic proton beams with an energy of hundreds of MeV,a beam charge of hundreds of pC,and a beam polarization of tens of percent can be produced at laser powers of several petawatts.Such laser-driven polarized proton beams have promise for application in polarized beam colliders,where they can be utilized to investigate particle interactions and to explore the properties of matter under extreme conditions. 展开更多
关键词 polarized proton beams Thomas Bargmann Michel Telegdi equation petawatt laser pulse proton beam polarization magnetic vortex acceleration laser driven plasma bubble generating polarized proton beams particle cell simulations
在线阅读 下载PDF
Reconnection of magnetic flux ropes driven by two-color Laguerre–Gaussian laser pulses in plasma
7
作者 Yin-Hong Liu Su-Ming Weng Zheng-Ming Sheng 《Matter and Radiation at Extremes》 2025年第4期24-34,共11页
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-... The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices. 展开更多
关键词 twisted plasma currents laguerre gaussian laser pulses magnetic islands electron plasma frequency Laguerre Gaussian laser pulses magnetic ux ropes magnetic flux ropes plasma reconnection
在线阅读 下载PDF
Laser-initiated p-^(11)B fusion reactions in petawatt high-repetition-rate laser facilities
8
作者 M.Scisciò G.Petringa +43 位作者 Z.Zhu M.R.D.Rodrigues M.Alonzo P.L.Andreoli F.Filippi Fe.Consoli M.Huault D.Raffestin D.Molloy H.Larreur D.Singappuli T.Carriere C.Verona P.Nicolai A.McNamee M.Ehret E.Filippov R.Lera J.A.Pérez-Hernández S.Agarwal M.Krupka S.Singh V.Istokskaia D.Lattuada M.La Cognata G.L.Guardo S.Palmerini G.Rapisarda K.Batani M.Cipriani G.Cristofari E.Di Ferdinando G.Di Giorgio R.De Angelis D.Giulietti J.Xu L.Volpe M.D.Rodríguez-Frías L.Giuffrida D.Margarone D.Batani G.A.P.Cirrone A.Bonasera Fa.Consoli 《Matter and Radiation at Extremes》 2025年第3期58-74,共17页
Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential a... Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity. 展开更多
关键词 petawatt laser p b reactions nuclear fusion reaction pitcher catcher scheme fusion energy alpha particle production high repetition rate laser driven fusion
在线阅读 下载PDF
Currents from relativistic laser-plasma interaction as a novel metrology for the system stability of high-repetition-rate laser secondary sources 被引量:1
9
作者 Michael Ehret Iuliana-Mariana Vladisavlevici +16 位作者 Philip Wykeham Bradford Jakub Cikhardt Evgeny Filippov Jose Luis Henares Rubén Hernández Martín Diego de Luis JoséAntonio Pérez-Hernández Pablo Vicente Tomas Burian Enrique García-García Juan Hernández Cruz Mendez Marta Olivar Ruíz Óscar Varela Maria Dolores Rodríguez Frías João Jorge Santos Giancarlo Gatti 《Matter and Radiation at Extremes》 2025年第2期24-34,共11页
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second... This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers. 展开更多
关键词 relativistic laser plasma interaction pearson linear correlation proton spectrum cutoff energy interaction schemes ion acceleration target normal sheath accelerationthe return current return currents
在线阅读 下载PDF
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:1
10
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys Microstructure evolution Mechanical properties
原文传递
Spatially random polarization-smoothing optics by residual stress birefringence of fused silica for laser-driven inertial confinement fusion
11
作者 Chuanchao Zhang Wei Liao +6 位作者 Xiaolong Jiang Haijun Wang Fa Zeng Wei Ni Ping Li Xiaodong Jiang Qihua Zhu 《Matter and Radiation at Extremes》 2025年第5期54-63,共10页
We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination unif... We demonstrate a new polarization smoothing(PS)approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate(SRPCP),thereby improving target illumination uniformity in inertial confinement fusion(ICF)laser systems.The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated.The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution.When combined with a continuous phase plate,the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot.The proposed PS technique is specifically designed for high-fluence large-aperture laser systems,enabling novel polarization control regimes in laser-driven ICF. 展开更多
关键词 spatially ra fused silica spatially random polarization control plate srpcp thereby linearly polarized incident laser beam residual stress birefringence fabrication techniques improving target illumination uniformity spatially random polarization smoothing
在线阅读 下载PDF
The growth mechanism and corrosion resistance of laser-assisted plasma electrolytic oxidation(PEO)composite coating on AZ31B magnesium alloy
12
作者 Guolong Wu Lin Li +4 位作者 Xianghui Chen Lebin Zhu Ye Wang Chen Wen Jianhua Yao 《Journal of Magnesium and Alloys》 2025年第2期760-776,共17页
In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,crack... In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,cracks and poor quality of PEO coatings.The plasma discharge evolution,morphological characteristics,elemental composition during coating growth were characterized by high-speed camera,SEM,EDX,XRD and XPS,respectively.Meanwhile,Mott Schottky(M-S)curves,potentiodynamic polarization(PDP)curves and electrochemical impedance spectroscopy(EIS)tests characterized the oxygen vacancy defects and corrosion resistance of the coatings.The results demonstrated that laser-assisted irradiation not only induced plasma discharge on the anode surface,but also limited the plasma discharge size in the post-processing stage,which significantly increased the proportion of corrosion-resistant phase Mg_(2)SiO_(4)(the proportion of Mg_(2)SiO_(4)increased from 23.70%to 39.22%),thickness and density in the coating,and obviously reduced the oxygen vacancy defects and microcracks in the coating.As a result,the corrosion resistance of the Laser/PEO coating(9.29(±0.76)×10^(-7)A·cm^(-2))was further enhanced in comparation with the PEO coating(3.06(±0.19)×10^(-6) A·cm^(-2)). 展开更多
关键词 AZ31B magnesium alloy LASER Plasma electrolytic oxidation Coating growth mechanism Corrosion resistance
在线阅读 下载PDF
Experiments and Multiscale Simulation on Enhancement Mechanism of Zirconium Alloy Microstructure and Properties by Laser Shock Peening
13
作者 Zhiyuan Liu Feng Pan +4 位作者 Xueran Deng Yujie Zhu Fei Fan Du Wang Qiao Xu 《Chinese Journal of Mechanical Engineering》 2025年第3期243-258,共16页
Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high ra... Zirconium alloys are critical materials in nuclear engineering due to their exceptional irradiation resistance and corrosion stability.However,prolonged exposure to extreme operational environments,including a high radiation,mechanical stress,and corrosive media,induces surface degradation mechanisms including stress corrosion cracking and erosion from impurity particle impacts,necessitating advanced surface treatments to improve hardness and corrosion resistance.We explore the application of laser shock peening(LSP)to enhance the surface properties of the Zr4 alloy.Experimental analyses reveal substantial microstructural modifications upon the LSP.The surface grain refinement achieved a maximum reduction of 52.7%in average grain size(from 22.88 to 10.8μm^(2)),accompanied by an increase of 59%in hardness(204 to 326 HV).Additionally,a compressive residual stress layer(approximately-100 MPa)was generated on the treated surface,which reduces the risk of stress corrosion cracking.To elucidate the mechanistic basis of these improvements,a multiscale computational framework was developed,integrating finite-element models for macroscale stress field evolution and molecular dynamics simulations for nanoscale dislocation dynamics.By incorporating the strain rate as a critical variable,this framework bridges microstructure evolution with macroscopic mechanical enhancements.The simulations not only elucidated the dynamic interplay between shockwave-induced plastic deformation and property improvements but also exhibited a good consistency with experimental residual stress profiles.Notably,we propose the application of strain rate-driven multiscale modeling in LSP research for Zr alloys,providing a predictive method to optimize laser parameters for a tailored surface strengthening.This study not only confirms that LSP is a feasible strategy capable of effectively enhancing the comprehensive surface properties of Zr alloys and extending their service life in nuclear environments,but also provides a reliable simulation methodology in the field of laser surface engineering of alloy materials. 展开更多
关键词 Zirconium alloy MICROSTRUCTURE Mechanical properties Laser shock peening Multiscale simulation
在线阅读 下载PDF
Laser additive manufacturing of Ti and Ce co-modified 2195 difficult-to-process aluminum alloy:Grain refinement,cracking suppression and enhanced mechanical properties
14
作者 Lixia XI Jiaxing HOU +3 位作者 Juncan XU He LIU Keyu SHI Dongdong GU 《Chinese Journal of Aeronautics》 2025年第8期604-621,共18页
High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking... High cracking susceptibility of Al-Li alloys with Ti/Ce B6addition is thoroughly suppressed in laser powder bed fusion(LPBF)processing of Ti/Ce co-modified 2195 alloys at relatively high scan speeds,while the cracking suppression mechanism and phase formation in these composites are not clarified.In this work,microstructure evolution and mechanical performance of the LPBF-fabricated Ti/Ce co-modified 2195 are investigated to reveal their cracking suppression and strengthening mechanisms.The results show that apparent grain refinement of the composites is ascribed to high supercooling from rapid formation of constitutional supercooling zone in front of solid–liquid interfaces by high-Q-value Ti solute,and heterogeneous nucleation of in situ formed Al3Ti and Al11Ce3precipitates.Their synergistic interactions promote formation of fine equiaxed grains and thus inhibit crack initiation.The composites exhibit high microhardness of 100±5HV0.2,nano-hardness of 1.6±0.1 GPa and elastic modulus of 97±3 GPa,where the elastic modulus increases by 27%and 31%compared to those of LPBF-processed and conventionally manufactured 2195 alloys,respectively.A tensile strength of 336 MPa and an elongation of 3%are obtained from in-situ synchrotron X-ray diffraction measurement.The improved properties are derived from grain refinement and Orowan strengthening.Based on the optimal processing parameter and composition,a bracket component filled with lattice structures is designed and manufactured with good manufacturing quality and processing accuracy. 展开更多
关键词 Laser powder bed fusion Ti/Ce co-modified 2195 alloy Grain refinement Cracking suppression Mechanical property
原文传递
Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets
15
作者 Qiang-You He Zi-Tao Wang +19 位作者 Zhi-Gang Deng Jie Feng Ya-Dong Xia Xi-Chen Hu Ming-Yang Zhu Jia-Jie Xie Zong-Qiang Yuan Zhi-Meng Zhang Feng Lu Lei Yang Hao Cheng Yu-Ze Li Yang Yan Yan-Lv Fang Chen-Tong Li Wei-Min Zhou Ting-Shuai Li Li-Ming Chen Chen Lin Xue-Qing Yan 《Nuclear Science and Techniques》 2025年第6期136-149,共14页
High-power laser pulses interacting with targets can generate intense electromagnetic pulses(EMPs),which can disrupt physical experimental diagnostics and even damage diagnostic equipment,posing a threat to the reliab... High-power laser pulses interacting with targets can generate intense electromagnetic pulses(EMPs),which can disrupt physical experimental diagnostics and even damage diagnostic equipment,posing a threat to the reliable operation of experiments.In this study,EMPs resulting from multi-petawatt laser irradiating nitrogen gas jets were systematically analyzed and investigated.The experimental results revealed that the EMP amplitude is positively correlated with the quantity and energy of the electrons captured and accelerated by the plasma channel.These factors are reflected by parameters such as laser energy and nitrogen gas jet pressure.Additionally,we propose several potential sources of EMPs produced by laser-irradiated gas jets and separately analyzed their spatiotemporal distributions.The findings provide insight into the mechanisms of EMP generation and introduce a new approach to achieve controllable EMPs by regulating the laser energy and gas jet pressure. 展开更多
关键词 Electromagnetic pulses Multi-petawatt laser Gas jets ELECTRONS
在线阅读 下载PDF
Correction:Generation and regulation of electromagnetic pulses induced by multi-petawatt laser coupling with gas jets
16
作者 Qiang-You He Zi-Tao Wang +19 位作者 Zhi-Gang Deng Jie Feng Ya-Dong Xia Xi-Chen Hu Ming-Yang Zhu Jia-Jie Xie Zong-Qiang Yuan Zhi-Meng Zhang Feng Lu Lei Yang Hao Cheng Yu-Ze Li Yang Yan Yan-Lv Fang Chen-Tong Li Wei-Min Zhou Ting-Shuai Li Li-Ming Chen Chen Lin Xue-Qing Yan 《Nuclear Science and Techniques》 2025年第7期253-254,共2页
Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness a... Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness and transparency,both correct and incorrect versions are displayed below. 展开更多
关键词 electromagnetic pulses gas jets nuclear science techniques multi petawatt laser
在线阅读 下载PDF
Characterization of nonlinear spectral linewidth and light shift in diffuse laser-cooled atoms
17
作者 Yiran Yin An-Ning Xu +1 位作者 Jin Peng Bei Liu 《Chinese Physics B》 2025年第2期250-255,共6页
We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shif... We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio?ν_E/?ν_R and light shift|?_R-?_E|using nonlinear spectroscopy.Specifically,when?ν_E/?ν_R reaches a value of 1.57,the temperature and number of cold atoms achieve the optimal cooling effect.This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect,contributing to the future development of isotropic laser cooling for application in quantum sensing. 展开更多
关键词 nonlinear spectrum diffuse laser cooling temperature measurement
原文传递
In-situ observation on bubble evolution during laser powder bed fusion of oxide ceramic
18
作者 Zhun Su Wenquan Lu +4 位作者 Zongye Ding Liang Zhao Fan Yang Jianguo Li Qiaodan Hu 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1451-1460,共10页
Laser powder bed fusion(LPBF)is used to fabricate complex-shaped,dense,and high-performance oxide ceramics.During LPBF,bubbles form and evolve in the melt pool and ultimately remain in the printed ceramics as pores,wh... Laser powder bed fusion(LPBF)is used to fabricate complex-shaped,dense,and high-performance oxide ceramics.During LPBF,bubbles form and evolve in the melt pool and ultimately remain in the printed ceramics as pores,which significantly degrade the mechanical properties.Therefore,it is essential to understand the bubble behaviors during LPBF.Herein,we conducted an in-situ investigation of the bubble dynamics in the melt pool of homogeneously mixed Al_(2)O_(3)-Y_(2)O_(3) powders using synchrotron high-speed X-ray imaging.The formation,growth,motion,and evolution of bubbles,as well as the relationship between the instability of melt flow and bubble rupture during LPBF,were elucidated.The findings reveal that bubbles from the interstices within the powder bed grow following three distinct modes,i.e.,uplift growth,gas channel attachment,and bubble coalescence.Furthermore,melt flow oscillations caused by the bursting of large bubbles can lead to local instability of the melt pool.Results from this study enhance the understanding of bubble dynamics during LPBF and may provide valuable insights for pore elimination in LPBF-processed oxide ceramics. 展开更多
关键词 synchrotron X-ray imaging laser powder bed fusion alumina–yttria bubble behaviors
在线阅读 下载PDF
Laser-driven micro-pinch:a pathway to ultra-intense neutrons
19
作者 Pu-Tong Wang Xue-Song Geng +2 位作者 Guo-Qiang Zhang Liang-Liang Ji Yu-Gang Ma 《Nuclear Science and Techniques》 2025年第6期150-155,共6页
Utilizing the laser-driven Z-pinch e ect,we propose an approach for generating an ultrashort,intense Me V neutron source with femtosecond pulse duration.The self-generated magnetic field driven by a petawatt-class las... Utilizing the laser-driven Z-pinch e ect,we propose an approach for generating an ultrashort,intense Me V neutron source with femtosecond pulse duration.The self-generated magnetic field driven by a petawatt-class laser pulse compressed the deuterium in a single nanowire to more than 120 times its initial density,achieving an unprecedented particle number density of 10^(25)cm^(-3).Through full-dimensional kinetic simulations,including nuclear reactions,we found that these Z-pinches can generate high-intensity and short-duration neutron pulses,with the peak flux reaching 10^(27)cm^(-2)s^(-1).Such laser-driven neutron sources are beyond the capabilities of existing approaches and pave the way for groundbreaking applications in r-process nucleosynthesis studies and high-precision time-of-flight neutron data measurements. 展开更多
关键词 Nanowire target Z-PINCH D–D fusion reaction Laser plasma Neutron source
在线阅读 下载PDF
Rapid optimization of laser powder bed fusion process:a high-throughput integrated multi-task robust modeling approach
20
作者 Han Zhang Bingke Song +6 位作者 Keyu Shi Yusheng Chen Biqi Yang Miao Chang Longhai Hu Jinming Xing Dongdong Gu 《International Journal of Extreme Manufacturing》 2025年第4期312-332,共21页
Transpiration cooling is crucial for the performance of aerospace engine components,relying heavily on the processing quality and accuracy of microchannels.Laser powder bed fusion(LPBF)offers the potential for integra... Transpiration cooling is crucial for the performance of aerospace engine components,relying heavily on the processing quality and accuracy of microchannels.Laser powder bed fusion(LPBF)offers the potential for integrated manufacturing of complex parts and precise microchannel fabrication,essential for engine cooling applications.However,optimizing LPBF’s extensive process parameters to control processing quality and microchannel accuracy effectively remains a significant challenge,especially given the time-consuming and labor-intensive nature of handling numerous variables and the need for thorough data analysis and correlation discovery.This study introduced a combined methodology of high-throughput experiments and Gaussian process algorithms to optimize the processing quality and accuracy of nickel-based high-temperature alloy with microchannel structures.250 parameter combinations,including laser power,scanning speed,channel diameter,and spot compensation,were designed across ten high-throughput specimens.This setup allowed for rapid and efficient evaluation of processing quality and microchannel accuracy.Employing Bayesian optimization,the Gaussian process model accurately predicted processing outcomes over a broad parameter range.The correlation between various processing parameters,processing quality and accuracy was revealed,and various optimized process combinations were summarized.Verification through computed Tomography testing of the specimens confirmed the effectiveness and precision of this approach.The approach introduced in this research provides a way for quickly and efficiently optimizing the process parameters and establishing process-property relationships for LPBF,which has broad application value. 展开更多
关键词 laser powder bed fusion process parameter HIGH-THROUGHPUT Gaussian process microchannel accuracy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部