A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore,...While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight.展开更多
The center of mass (CoM) is a key descriptor in the understanding and the analysis of bipedal locomotion. Some approaches are based on the premise that humans minimize the CoM vertical displacement. Other approaches...The center of mass (CoM) is a key descriptor in the understanding and the analysis of bipedal locomotion. Some approaches are based on the premise that humans minimize the CoM vertical displacement. Other approaches express walking dynamics through the inverted pendulum model. Such approaches are contradictory in that they lead to two conflicting patterns to express the CoM motion: straight line segments for the first approaches and arcs of a circle for the second ones. In this paper, we show that CoM motion is a trade-off between both patterns. Specifically, CoM follows a "curtate cycloid", which is the curve described by a point rigidly attached to a wheel rolling on a flat surface. We demonstrate that all the three parameters defining a curtate cycloid only depend on the height of the subjects.展开更多
Optimizing water consumption is a major challenge for more sustainable agriculture with respect for the environment. By combining micro and nanotechnologies with the offered solutions of IoT connection (Sigfox and LoR...Optimizing water consumption is a major challenge for more sustainable agriculture with respect for the environment. By combining micro and nanotechnologies with the offered solutions of IoT connection (Sigfox and LoRa), new sensors allow the farmer to be connected to his agricultural production by mastering in real time the right contribution needed in water and fertilizer. The sensor designed in this research allows a double measurement of soil moisture and salinity. In order to minimize the destructuring of the ground to insert the sensor, we have designed a cylindrical sensor, easy to insert, with its electronics inside its body to propose a low power electronic architecture capable of measuring and communicating wireless with a LoRa or Sigfox network or even the farmer’s cell phone. This new smart sensor is then compared to the current leaders in agriculture to validate its performance. Finally, the sensor has better performance than commercials, a better response time, a better precision and it will be cheaper. For the salinity measure, it can detect the level of fertilizer in the soil according to the need of farmers.展开更多
This article presents all steps between the advanced design and the production of CMOS compatible thermoelectric effect infrared sensors dedicated to smart home applications. It will start by making a comparison betwe...This article presents all steps between the advanced design and the production of CMOS compatible thermoelectric effect infrared sensors dedicated to smart home applications. It will start by making a comparison between thermopile, bolometer and pyroelectric technologies. Although sensitivity performances available with bolometers appear to be better at first sight, it is found that thermopiles have non-negligible advantages that make them more suitable for this application field. Then the different steps necessary for the design will be described, starting from the thermoelectric model of the sensor (temperature gradient, electrical sensitivity, etc.) and considering all steps up to technological manufacturing in a clean room. The results obtained on the structures produced on a specific computer-controlled measurement bench (temperature regulation with an onboard preamplification card) will be presented. Finally, the results prove that the square structures have better performances (S = 82 V/W and NETD = 208 mK).展开更多
Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real publi...Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real public health issue. France was selected by the World Health Organization to be the first country to implement a program that reduces the coverage of the dependence. Commercial automatic fall detection devices can help seniors get back on their feet faster by reducing the time of emergency procedure. Many seniors do not take advantage of this potentially life-saving technology mainly because of intrusiveness constraints. After having reminded the context and the challenges of fall detection systems, this paper presents an original device which is unobtrusive, comfortable and very effective. The hardware architecture embedded into the sole and a new fall detection algorithm based on acceleration and time thresholds are presented. The algorithm introduces a new concept of differential acceleration to eliminate some drawbacks of current systems. Tests were carried out under real life conditions by 6 young participants for different ADLs. The data were analyzed blindly. We compared the detected falls and found a 100% sensibility and more than 93% sensitivity for all participants and scenarios.展开更多
This article exhibits the sizing, modelling, and characterization of a power supply (output 3.3 V, 200 mA max, 11 days full autonomy) dedicated to powering a wireless sensor node without a battery but usable as simply...This article exhibits the sizing, modelling, and characterization of a power supply (output 3.3 V, 200 mA max, 11 days full autonomy) dedicated to powering a wireless sensor node without a battery but usable as simply as with a battery. This system is modular for various light levels (indoor and outdoor). It is easily integrable into a sensor node, using only commercial circuits. The choices of the photovoltaic surface (amorphous silicon, η 5%, 35 cm<sup>2</sup>) and of the supercapacitors value (2x 25F, 2.7 V) are explained for permanent operation, considering the solar potential and the consumption. An original part of the paper is devoted to the issue of the startup, in which we demonstrate that after a particular preload, once installed, the device can start on request at the desired time (within 15 days) using as a trigger any light source, such as the LED of a mobile phone.展开更多
Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The pr...Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The presented algorithm is robust and finds the nearest neighbor in a logarithmic order. The proposed algorithm reports the nearest neighbor in , where k is a very small constant when compared with the dataset size n and d is the number of dimensions. Experimental results demonstrate the efficiency of the proposed algorithm.展开更多
This paper presents a methodological approach to design a printed Inverted F antenna for the ISM 868 MHz band. For this design, the ground plane dimensions were kept fixed and the meandered radiating arm was modified ...This paper presents a methodological approach to design a printed Inverted F antenna for the ISM 868 MHz band. For this design, the ground plane dimensions were kept fixed and the meandered radiating arm was modified to obtain the best compromise integration/performances. This approach was then generalized to design meandered printed inverted F antennas.展开更多
According to the latest studies, the French population witnesses a high level of elderly. It follows from this phenomenon health troubles, fragility, and for some people suffering from cognitive problems, a daily need...According to the latest studies, the French population witnesses a high level of elderly. It follows from this phenomenon health troubles, fragility, and for some people suffering from cognitive problems, a daily need of monitoring and tracking in the fugues cases. It is in this context that comes our research program SACHA (Search and Computerize Human Acts). Our ambition is to develop an electronic patch able to trigger alarms, detect falls and provide geolocation service. Our studies were focused on the conception and the integration of different antennas and functionalities of this system in aim to ensure a good compromise “integration/performances”. Several prototypes have been tested and validated in a nursing home.展开更多
The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which inco...The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which incorporates a saturation constraint technique compared to classical linear quadratic regulator (LQR) with saturation. In the first step, the authors present a design methodology of SMC of a class of linear saturated systems. The authors present the structure of the saturation, after that the synthesis of the sliding surface is formulate as a problem of root clustering, which leads to the development of a continuous and non-linear control law that ensures the reaching condition of the sliding mode. The second step is devoted to present briefly the LQR controller technique. Finally, to validate results, the authors demonstrate an example of a quarter of vehicle system.展开更多
This paper introduces the development of two Printed Inverted F Antennas (PIFA) to be integrated in a patch worn on the back of human body. This study is part of SACHA project (Search And Computerize Human Acts) whose...This paper introduces the development of two Printed Inverted F Antennas (PIFA) to be integrated in a patch worn on the back of human body. This study is part of SACHA project (Search And Computerize Human Acts) whose main aim is to design a tracking device for monitoring the elderly suffering from Alzheimer disease. The first antenna frequency is 868 MHz and will be used to communicate with a specific SIGFOX communication technology. A second frequency (1575.42 MHz) is used for GPS geolocation. The proposed development is a part of research in Human Health Monitoring field, based on the monitoring of the behavior, the location and the position of the patient, and could deeply help the medical team or family to instantly respond through a warning generation.展开更多
The design process for integrated inductors generally requires a geometry optimization step. During this step, many geometries must be simulated and fast and accurate formulae are therefore required for the computatio...The design process for integrated inductors generally requires a geometry optimization step. During this step, many geometries must be simulated and fast and accurate formulae are therefore required for the computation of self and mutual inductances of turns. This paper especially deals with numerical evaluation of the mutual inductance of two coaxial circular wire loops. Several computation methods are presented and compared. Finally, an expression is built-up and proven to be very few computing time consuming and 1% accurate for any kind of geometry. The application of this expression to integrated inductive components modelization is recalled to mind, however, this work gives a general and fast computable solution to the electromagnetic problem.展开更多
Timely fault detection in photovoltaic systems is critical for ensuring energy efficiency,reliability,and cost-effectiveness.However,the nonlinear and weather-dependent behavior of photovoltaic systems poses challenge...Timely fault detection in photovoltaic systems is critical for ensuring energy efficiency,reliability,and cost-effectiveness.However,the nonlinear and weather-dependent behavior of photovoltaic systems poses challenges for accurate diagnosis.This study presents a large-scale review of 983 scientific publications on artificial intelligence-based photovoltaic fault detection,using a novel methodology called Topic-tSNE Fusion.This approach integrates topic modeling,dimensionality reduction,and expert analysis to extract and visualize dominant research themes.Four key machine learning paradigms are identified:supervised,unsupervised,semi-supervised,and reinforcement learning.Among them,supervised methods,particularly neural networks and support vector machines,are the most frequently applied,showing accuracies above 95%in controlled conditions.The analysis also reveals growing use of semi-supervised and hybrid approaches to overcome data scarcity.Commonly monitored variables include irradiance,voltage,and current,while the most studied faults are shading,open-circuit,and degradation.Several open-access datasets supporting fault diagnosis research are catalogued.Overall,the proposed method enables a more objective and scalable review process and uncovers emerging trends,such as the shift toward lightweight artificial intelligence for edge deployment and frugal diagnostic architectures.The methodology is scalable and adaptable to other domains facing similar challenges in knowledge synthesis and system monitoring.展开更多
A CMOS compatible process is prese nted in order to grow self-catalyzed InAs nano wires on silic on by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas ...A CMOS compatible process is prese nted in order to grow self-catalyzed InAs nano wires on silic on by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic ann eali ng prior to growth. Morphological and structural characterizati ons of the InAs nano wires are prese nted and growth mecha nisms are discussed in detail. The major in flue nee of surface termi nation is exposed both experime ntally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of I nAs nano wires can be explai ned by these differe nt surfaces termi nations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nano wires (up to 50 nm in diameter and 3 micron in len gth) without passi ng the 410℃ thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface termi nations.展开更多
Despite the exceptional progress in breast cancer pathogenesis,prognosis,diagnosis,and treatment strategies,it remains a prominent cause of female mortality worldwide.Additionally,although chemotherapies are effective...Despite the exceptional progress in breast cancer pathogenesis,prognosis,diagnosis,and treatment strategies,it remains a prominent cause of female mortality worldwide.Additionally,although chemotherapies are effective,they are associated with critical limitations,most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance(MDR)cancer cells.Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use,none of which employ active targeting.In this review,we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface,transmembrane and internal cell receptors,enzymes,direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells,e.g.,cancer stem cells,cells associated with the tumor microenvironment,etc.展开更多
In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, system...In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that are of systems engineering essence and others that more closely correspond to those that are more relevant for related disciplines.展开更多
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
文摘While Internet traffic is currently dominated by elastic data transfers, it is anticipated that streaming applications will rapidly develop and contribute a significant amount of traffic in the near future. Therefore, it is essential to understand and capture the relation between streaming and elastic traffic behavior. In this paper, we focus on developing simple yet effective approximations to capture this relationship. We study, then, an analytical model to evaluate the end-to-end performance of elastic traffic under multi-queuing system. This model is based on the fluid flow approximation. We assume that network architecture gives the head of priority to real time traffic and shares the remaining capacity between the elastic ongoing flows according to a specific weight.
基金supported by the European Research Council through the Actanthrope Project and the French National Research Agency Project Loco3D
文摘The center of mass (CoM) is a key descriptor in the understanding and the analysis of bipedal locomotion. Some approaches are based on the premise that humans minimize the CoM vertical displacement. Other approaches express walking dynamics through the inverted pendulum model. Such approaches are contradictory in that they lead to two conflicting patterns to express the CoM motion: straight line segments for the first approaches and arcs of a circle for the second ones. In this paper, we show that CoM motion is a trade-off between both patterns. Specifically, CoM follows a "curtate cycloid", which is the curve described by a point rigidly attached to a wheel rolling on a flat surface. We demonstrate that all the three parameters defining a curtate cycloid only depend on the height of the subjects.
文摘Optimizing water consumption is a major challenge for more sustainable agriculture with respect for the environment. By combining micro and nanotechnologies with the offered solutions of IoT connection (Sigfox and LoRa), new sensors allow the farmer to be connected to his agricultural production by mastering in real time the right contribution needed in water and fertilizer. The sensor designed in this research allows a double measurement of soil moisture and salinity. In order to minimize the destructuring of the ground to insert the sensor, we have designed a cylindrical sensor, easy to insert, with its electronics inside its body to propose a low power electronic architecture capable of measuring and communicating wireless with a LoRa or Sigfox network or even the farmer’s cell phone. This new smart sensor is then compared to the current leaders in agriculture to validate its performance. Finally, the sensor has better performance than commercials, a better response time, a better precision and it will be cheaper. For the salinity measure, it can detect the level of fertilizer in the soil according to the need of farmers.
文摘This article presents all steps between the advanced design and the production of CMOS compatible thermoelectric effect infrared sensors dedicated to smart home applications. It will start by making a comparison between thermopile, bolometer and pyroelectric technologies. Although sensitivity performances available with bolometers appear to be better at first sight, it is found that thermopiles have non-negligible advantages that make them more suitable for this application field. Then the different steps necessary for the design will be described, starting from the thermoelectric model of the sensor (temperature gradient, electrical sensitivity, etc.) and considering all steps up to technological manufacturing in a clean room. The results obtained on the structures produced on a specific computer-controlled measurement bench (temperature regulation with an onboard preamplification card) will be presented. Finally, the results prove that the square structures have better performances (S = 82 V/W and NETD = 208 mK).
文摘Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real public health issue. France was selected by the World Health Organization to be the first country to implement a program that reduces the coverage of the dependence. Commercial automatic fall detection devices can help seniors get back on their feet faster by reducing the time of emergency procedure. Many seniors do not take advantage of this potentially life-saving technology mainly because of intrusiveness constraints. After having reminded the context and the challenges of fall detection systems, this paper presents an original device which is unobtrusive, comfortable and very effective. The hardware architecture embedded into the sole and a new fall detection algorithm based on acceleration and time thresholds are presented. The algorithm introduces a new concept of differential acceleration to eliminate some drawbacks of current systems. Tests were carried out under real life conditions by 6 young participants for different ADLs. The data were analyzed blindly. We compared the detected falls and found a 100% sensibility and more than 93% sensitivity for all participants and scenarios.
文摘This article exhibits the sizing, modelling, and characterization of a power supply (output 3.3 V, 200 mA max, 11 days full autonomy) dedicated to powering a wireless sensor node without a battery but usable as simply as with a battery. This system is modular for various light levels (indoor and outdoor). It is easily integrable into a sensor node, using only commercial circuits. The choices of the photovoltaic surface (amorphous silicon, η 5%, 35 cm<sup>2</sup>) and of the supercapacitors value (2x 25F, 2.7 V) are explained for permanent operation, considering the solar potential and the consumption. An original part of the paper is devoted to the issue of the startup, in which we demonstrate that after a particular preload, once installed, the device can start on request at the desired time (within 15 days) using as a trigger any light source, such as the LED of a mobile phone.
文摘Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The presented algorithm is robust and finds the nearest neighbor in a logarithmic order. The proposed algorithm reports the nearest neighbor in , where k is a very small constant when compared with the dataset size n and d is the number of dimensions. Experimental results demonstrate the efficiency of the proposed algorithm.
文摘This paper presents a methodological approach to design a printed Inverted F antenna for the ISM 868 MHz band. For this design, the ground plane dimensions were kept fixed and the meandered radiating arm was modified to obtain the best compromise integration/performances. This approach was then generalized to design meandered printed inverted F antennas.
文摘According to the latest studies, the French population witnesses a high level of elderly. It follows from this phenomenon health troubles, fragility, and for some people suffering from cognitive problems, a daily need of monitoring and tracking in the fugues cases. It is in this context that comes our research program SACHA (Search and Computerize Human Acts). Our ambition is to develop an electronic patch able to trigger alarms, detect falls and provide geolocation service. Our studies were focused on the conception and the integration of different antennas and functionalities of this system in aim to ensure a good compromise “integration/performances”. Several prototypes have been tested and validated in a nursing home.
文摘The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which incorporates a saturation constraint technique compared to classical linear quadratic regulator (LQR) with saturation. In the first step, the authors present a design methodology of SMC of a class of linear saturated systems. The authors present the structure of the saturation, after that the synthesis of the sliding surface is formulate as a problem of root clustering, which leads to the development of a continuous and non-linear control law that ensures the reaching condition of the sliding mode. The second step is devoted to present briefly the LQR controller technique. Finally, to validate results, the authors demonstrate an example of a quarter of vehicle system.
文摘This paper introduces the development of two Printed Inverted F Antennas (PIFA) to be integrated in a patch worn on the back of human body. This study is part of SACHA project (Search And Computerize Human Acts) whose main aim is to design a tracking device for monitoring the elderly suffering from Alzheimer disease. The first antenna frequency is 868 MHz and will be used to communicate with a specific SIGFOX communication technology. A second frequency (1575.42 MHz) is used for GPS geolocation. The proposed development is a part of research in Human Health Monitoring field, based on the monitoring of the behavior, the location and the position of the patient, and could deeply help the medical team or family to instantly respond through a warning generation.
文摘The design process for integrated inductors generally requires a geometry optimization step. During this step, many geometries must be simulated and fast and accurate formulae are therefore required for the computation of self and mutual inductances of turns. This paper especially deals with numerical evaluation of the mutual inductance of two coaxial circular wire loops. Several computation methods are presented and compared. Finally, an expression is built-up and proven to be very few computing time consuming and 1% accurate for any kind of geometry. The application of this expression to integrated inductive components modelization is recalled to mind, however, this work gives a general and fast computable solution to the electromagnetic problem.
基金Artificial and Natural Intelligence Toulouse Institute ANITI funded by the France 2030 program under the Grant agreements n◦ANR-19-PI3A-0004 and n◦ANR-23-IACL-0002the SticAmSud project HAMADI 4.0“Hybrid Algorithms based on Models and Data in Industry 4.0”,n◦22-STIC-06.
文摘Timely fault detection in photovoltaic systems is critical for ensuring energy efficiency,reliability,and cost-effectiveness.However,the nonlinear and weather-dependent behavior of photovoltaic systems poses challenges for accurate diagnosis.This study presents a large-scale review of 983 scientific publications on artificial intelligence-based photovoltaic fault detection,using a novel methodology called Topic-tSNE Fusion.This approach integrates topic modeling,dimensionality reduction,and expert analysis to extract and visualize dominant research themes.Four key machine learning paradigms are identified:supervised,unsupervised,semi-supervised,and reinforcement learning.Among them,supervised methods,particularly neural networks and support vector machines,are the most frequently applied,showing accuracies above 95%in controlled conditions.The analysis also reveals growing use of semi-supervised and hybrid approaches to overcome data scarcity.Commonly monitored variables include irradiance,voltage,and current,while the most studied faults are shading,open-circuit,and degradation.Several open-access datasets supporting fault diagnosis research are catalogued.Overall,the proposed method enables a more objective and scalable review process and uncovers emerging trends,such as the shift toward lightweight artificial intelligence for edge deployment and frugal diagnostic architectures.The methodology is scalable and adaptable to other domains facing similar challenges in knowledge synthesis and system monitoring.
文摘A CMOS compatible process is prese nted in order to grow self-catalyzed InAs nano wires on silic on by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic ann eali ng prior to growth. Morphological and structural characterizati ons of the InAs nano wires are prese nted and growth mecha nisms are discussed in detail. The major in flue nee of surface termi nation is exposed both experime ntally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of I nAs nano wires can be explai ned by these differe nt surfaces termi nations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nano wires (up to 50 nm in diameter and 3 micron in len gth) without passi ng the 410℃ thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface termi nations.
文摘Despite the exceptional progress in breast cancer pathogenesis,prognosis,diagnosis,and treatment strategies,it remains a prominent cause of female mortality worldwide.Additionally,although chemotherapies are effective,they are associated with critical limitations,most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance(MDR)cancer cells.Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use,none of which employ active targeting.In this review,we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface,transmembrane and internal cell receptors,enzymes,direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells,e.g.,cancer stem cells,cells associated with the tumor microenvironment,etc.
文摘In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that are of systems engineering essence and others that more closely correspond to those that are more relevant for related disciplines.