期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
QTL Mapping for Drought Tolerance at Stages of Germination and Seedling in Wheat (Triticum aestivum L.) Using a DH Population 被引量:25
1
作者 HAOZhuan-fang CHANGXiao-ping +3 位作者 GUOXiao-jian JINGRui-lian LIRun-zhi JIAJi-zeng 《Agricultural Sciences in China》 CAS CSCD 2003年第9期943-949,共7页
Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in... Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in a double haploid (DH) population derived from the cross, Hanxuan10×Lumai14, using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Interval mapping analysis revealed that QTLs for drought tolerance at germination stage were located on chromosomes 1B, 2B, 5A, 6B, 7A and 7B, respectively, and the most effective QTL was mapped on chromosome 2B, explaining 27.2% of phenotypic variance. The QTLs for drought tolerance at seedling stage were located on 1B, 3B and 7B, respectively, and the most effective QTL was mapped on chromosome 3B, explaining 21.6% of phenotypic variance. Their positions were different from those of QTLs conferring drought tolerance at germination stage, indicating that drought tolerance at germination stage and seedling stage was controlled by different loci. Most of the identified QTLs explained 18% or more of phenotypic variance for drought tolerance at germination and seedling stage, and would be useful in future for marker assisted selection programs and cultivar improvement. 展开更多
关键词 Wheat ( Triticum aestivum L.) Quantitative trait loci (QTLs) Drought tolerance Germination stage Seedling stage
在线阅读 下载PDF
Chromosomal Distribution of the 18S-5.8S-26S rDNA Loci and Heterogeneity of Nuclear ITS Regions in Thinopyrum intermedium (Poaceae: Triticeae) 被引量:4
2
作者 LIDa-Yong RUYan-Yan ZHANGXue-Yong 《Acta Botanica Sinica》 CSCD 2004年第10期1234-1241,共8页
Fluorescent in situ hybridization (FISH) was used to investigate the chromosomal location of 18S-5.8S-26S rDNA loci in Thinopyrum intermedium (Host) Barkworth et Dewey (2n=6x=42). In all accessions and individuals stu... Fluorescent in situ hybridization (FISH) was used to investigate the chromosomal location of 18S-5.8S-26S rDNA loci in Thinopyrum intermedium (Host) Barkworth et Dewey (2n=6x=42). In all accessions and individuals studied, 3 or 4 pairs of major loci were detected. Subsequent genomic in situhybddization (GISH) analyses revealed that one pair was located on the ends of the short arms of one pair of homologous chromosomes of the St genome, while the other 2 or 3 pairs of major loci were located in the E genomes (including the E^o and E^b). It is suggested that 2 to 3 pairs of major loci were probably lost during the evolution of this hexaploid species. The variation in rDNA positions and copy numbers between the diploid donors and Th. interrnedium, as well as the diversity among the accessions of Th. intermedium confirmed that the rDNA gene family conveyed the characters of DNA mobile elements. The internal transcribed spacer (ITS) regions of the rDNA in Th. intermedium were also investigated. Sequence data of seven positive clones from one individual suggested high degree of individual heterogeneity exists among ITS repeats. Phylogenetic analyses showed that there were two distinct types of ITS sequences in Th. intermedium, one with homology to that of Pseudoroegneria species (St genome) and the other to that of the E genome diploid species. This showed that the ITS paralogues in Th. intermedium have not been uniformly homogenized by concerted evolution. The limitation of using the chromosomal location of rDNA loci for phylogenetic analysis is discussed. 展开更多
关键词 荧光原位杂交 染色体 异质性 脱氧核糖核酸 植物
在线阅读 下载PDF
Molecular Cytogenetic Identification of a Wheat-Thinopyron intermedium (Host) Barkworth & DR Dewey Partial Amphiploid Resistant to Powdery Mildew 被引量:11
3
作者 Shu-BingLIU Hong-GangWANG +4 位作者 Xue-YongZHANG Xing-FengLI Da-YongLI Xia-YuDUAN Yi-LinZHOU 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第6期726-733,共8页
: Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (... : Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium(Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28 bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattern was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat- Th. intermedium partial amphiploids Zhong 1–5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E. 展开更多
关键词 Genomic in situ hybridization (GISH) partial amphiploid powdery mildew Thinopyron intermedium WHEAT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部