期刊文献+
共找到1,404篇文章
< 1 2 71 >
每页显示 20 50 100
Potential mechanisms of non-coding RNA regulation in Alzheimer's disease 被引量:1
1
作者 Yue Sun Xinping Pang +5 位作者 Xudong Huang Dinglu Liu Jingyue Huang Pengtao Zheng Yanyu Wei Chaoyang Pang 《Neural Regeneration Research》 2026年第1期265-280,共16页
Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathologica... Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathological characteristics and molecular pathways associated with its progression.Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.These non-coding RNAs regulate several biological processes critical to the advancement of the disease,offering promising potential as therapeutic targets and diagnostic biomarkers.Therefore,this review aims to investigate the underlying mechanisms of Alzheimer's disease onset,with a particular focus on microRNAs,long non-coding RNAs,and circular RNAs associated with the disease.The review elucidates the potential pathogenic processes of Alzheimer's disease and provides a detailed description of the synthesis mechanisms of the three aforementioned non-coding RNAs.It comprehensively summarizes the various non-coding RNAs that have been identified to play key regulatory roles in Alzheimer's disease,as well as how these noncoding RNAs influence the disease's progression by regulating gene expression and protein functions.For example,miR-9 targets the UBE4B gene,promoting autophagy-mediated degradation of Tau protein,thereby reducing Tau accumulation and delaying Alzheimer's disease progression.Conversely,the long non-coding RNA BACE1-AS stabilizes BACE1 mRNA,promoting the generation of amyloid-βand accelerating Alzheimer's disease development.Additionally,circular RNAs play significant roles in regulating neuroinflammatory responses.By integrating insights from these regulatory mechanisms,there is potential to discover new therapeutic targets and potential biomarkers for early detection and management of Alzheimer's disease.This review aims to enhance the understanding of the relationship between Alzheimer's disease and non-coding RNAs,potentially paving the way for early detection and novel treatment strategies. 展开更多
关键词 Alzheimer's disease biomarkers circular RNA long non-coding RNA MICRORNA ncRNA regulation NEURODEGENERATION non-coding RNA PATHOGENESIS therapeutic targets
暂未订购
Spatiotemporal Heterogeneity and Key Driving Factors of Ecological Land Fragmentation in Guanzhong Plain Urban Agglomeration,China
2
作者 DONG Yong ZHOU Liang +3 位作者 CHE Tao GAO Hong SUN Qinke WANG Wenda 《Chinese Geographical Science》 2025年第6期1392-1410,共19页
Due to the multiple impacts of global climate change and anthropogenic disturbances,regional ecological landscapes have been developing towards fragmentation.How to quantitatively measure regional ecological landscape... Due to the multiple impacts of global climate change and anthropogenic disturbances,regional ecological landscapes have been developing towards fragmentation.How to quantitatively measure regional ecological landscape fragmentation and identify its key drivers is an important foundation for regional biodiversity conservation and ecosystem restoration.Taking the Guanzhong Plain Urban Agglomeration(GPUA),China as the research object,this paper proposes a comprehensive framework that integrates landscape pattern index,principal component analysis,random forest(RF)and other methods to quantitatively analyze the spatial and temporal evolution of ecological landscape fragmentation and its driving factors.The results show that:1)cropland,forestland and grassland showed significant spatial differentiation in the landscape pattern index,and the change of their mean values indicated that cropland and forestland show a trend of‘little decrease-continuous increase’.Spatially,the northwestern and southeastern regions showed significant fragmentation and prominent spatial heterogeneity.2)From 2010 to 2020,the landscape fragmentation of cropland and forestland increased by 71%and 20%,respectively,while that of grassland decreased by 33%,indicating that the degree of landscape fragmentation of cropland changed more drastically than that of other ecological land.3)It was found that slope was the most important factor affecting landscape fragmentation of ecological land.In addition,road density had a significant effect on landscape fragmentation of cropland and forestland,but the min-distance between patches and the county center had an important effect on landscape fragmentation of grassland.This study can provide theoretical references for urban agglomeration planning and sustainable landscape management on a regional scale. 展开更多
关键词 ecological landscape FRAGMENTATION random forest(RF) driving factors Guanzhong Plain Urban Agglomeration of China(GPUA)
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
3
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Ultrasonic vibration-assisted cutting of titanium alloys:A state-of-the-art review 被引量:3
4
作者 Ahmar KHAN Xin WANG +7 位作者 Biao ZHAO Wenfeng DING Muhammad JAMIL Aqib Mashood KHAN Syed Hammad ALI Sadam HUSSAIN Jiong ZHANG Raj DAS 《Chinese Journal of Aeronautics》 2025年第1期3-42,共40页
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med... The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry. 展开更多
关键词 Ultrasonic vibration-assisted cutting Titanium alloys Material removal mechanism MACHINABILITY SUSTAINABILITY
原文传递
Atomic-scale investigation on the evolution of T_(1) precipitates in an aged Al-Cu-Li-Mg-Ag alloy 被引量:1
5
作者 Xinyue Zhao Juan Ding +2 位作者 Daihong Xiao Lanping Huang Wensheng Liu 《Journal of Materials Science & Technology》 2025年第6期139-148,共10页
The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the compl... The T_(1)(Al_(2) CuLi)phase is one of the most effective strengthening nanoscale-precipitate in Al-Cu alloys with Li.However,its formation and evolution still need to be further clarified during aging due to the complex precipitation sequences.Here,a detailed investigation has been carried out on the atomic struc-tural evolution of T_(1) precipitate in an aged Al-Cu-Li-Mg-Ag alloy using state-of-the-art Cs-corrected high-angle annular dark field(HAADF)-coupled with integrated differential phase contrast(iDPC)-scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDXS)techniques.An intermediate T_(1)’phase between T_(1p) and T_(1) phase,with a crystal structure and orientation rela-tionship consistent with T_(1),but exhibiting different atomic occupancy and chemical composition was found.We observed the atomic structural transformation from T_(1p) to T_(1)’phase(fcc→hcp),involving only 1/12<112>Al shear component.DFT calculation results validated our proposed structural models and the precipitation sequence.Besides,the distributions of minor solute elements(Ag,Mg,and Zn)in the pre-cipitates exhibited significant differences.These findings may contribute to a further understanding of the nucleation mechanism of T_(1) precipitate. 展开更多
关键词 PRECIPITATE Chemical composition Atomic structure Aluminium alloy STEM
原文传递
Atomic-scale insights into microscopic mechanisms of grain boundary segregation in Al−Cu alloys 被引量:1
6
作者 Xiong SHUAI Hong MAO +2 位作者 Sai TANG Yi KONG Yong DU 《Transactions of Nonferrous Metals Society of China》 2025年第1期1-12,共12页
This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo sim... This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics. 展开更多
关键词 grain boundaries segregation Al−Cu alloy intergranular structure molecular dynamics simulation Monte Carlo simulation
在线阅读 下载PDF
Recent developments in MQL machining of aeronautical materials:A comparative review 被引量:3
7
作者 Syed Hammad ALI Yu YAO +7 位作者 Bangfu WU Biao ZHAO Wenfeng DING Muhammad JAMIL Ahmar KHAN Asra BAIG Qi LIU Dongdong XU 《Chinese Journal of Aeronautics》 2025年第1期43-69,共27页
Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan... Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed. 展开更多
关键词 Aerospace materials Minimum Quantity Lubrication(MQL) CRYOGENIC NANOFLUID GRINDING MILLING Sustainability
原文传递
Performance and electromagnetic mechanism of radar-and infraredcompatible stealth materials based on photonic crystals 被引量:3
8
作者 Yanming Liu Xuan Yang +3 位作者 Lixin Xuan Weiwei Men Xiao Wu Yuping Duan 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期710-717,共8页
Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening ... Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research. 展开更多
关键词 microwave absorption infrared stealth photonic crystal compatible stealth
在线阅读 下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation 被引量:1
9
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts Flow simulation Turbulent flow
原文传递
Establishment of an efficient Agrobacterium rhizogenes-mediated hairy root transformation method for subtropical fruit trees 被引量:1
10
作者 Mao Yin Yonghua Jiang +4 位作者 Yingjie Wen Fachao Shi Hua Huang Qian Yan Hailun Liu 《Horticultural Plant Journal》 2025年第4期1699-1702,共4页
Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb... Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation. 展开更多
关键词 study gene function krenek plant genetic engineering hairy root transformation fruit trees agrobacterium rhizogenes subtropical fruit trees genetic transformation chinese cabbage li
在线阅读 下载PDF
A novel strategy for promoting corrosion and wear resistance of Mg-Li alloys:Gradient eutectic high-entropy alloy coating induced by in-situ bidirectional diffusion 被引量:1
11
作者 Xin Wen Xiufang Cui +5 位作者 Yufei Liu Ye Zhang Haoliang Tian Simin Wan Lipeng Jiang Guo Jin 《Journal of Magnesium and Alloys》 2025年第5期2267-2282,共16页
In this work,a novel surface strengthening strategy for Mg-Li alloys was proposed,called cold spraying assisted high-speed laser cladding.CuAl9 aluminum bronze coating was firstly deposited on Mg-Li alloy by cold spra... In this work,a novel surface strengthening strategy for Mg-Li alloys was proposed,called cold spraying assisted high-speed laser cladding.CuAl9 aluminum bronze coating was firstly deposited on Mg-Li alloy by cold spraying,and then CoCrFe_(0.5)Ni_(1.5)Mo_(0.1)Nb_(0.68)eutectic highentropy alloy(EHEA)coating was prepared on the CuAl9 coating utilizing high-speed laser cladding.A gradient coating consisted of in-situ transition region and EHEA layer formed by bidirectional diffusion.The in-situ transition region was composed ofβ-Li,Cu_(2)Mg and Cu_(3)Al_(2)phases.TEM analysis indicated that Cu_(2)Mg and Cu_(3)Al_(2)phases were well matched with theβ-Li matrix phase.The EHEA coating had a nano-lamellar eutectic microstructure with relatively small lamellar-spacing(<100 nm).Metallurgical bonding interfaces formed between the EHEA coating,transition region and Mg-Li substrate.The evolution mechanism of the coating was revealed from the perspectives of mixing enthalpy,atomic radius difference and laser energy distribution.In 3.5 wt.%NaCl solution,the corrosion potential of the EHEA coating(-24 m VSHE)was 1345 m VSHEhigher than that of Mg-Li alloy(-1369 m VSHE),while the corrosion current density of the EHEA coating(3.13×10^(-7)A·cm^(-2))was almost three orders of magnitude lower than that of Mg-Li alloy(1.25×10^(-4)A·cm^(-2)).The wear rate of Mg-Li alloy(1.11×10^(-3)mm^(3)/N·m)was about 36 times higher than that of the EHEA coating(3.05×10^(-5)mm^(3)/N·m). 展开更多
关键词 Cold spraying High-speed laser cladding Mg-Li alloys Surface strengthening Microstructure evolution
在线阅读 下载PDF
Probability of detection and anomaly distribution modeling for surface defects in tenon-groove structures of aeroengine disks 被引量:1
12
作者 Hongzhuo LIU Disi YANG +3 位作者 Han YAN Zixu GUO Dawei HUANG Xiaojun YAN 《Chinese Journal of Aeronautics》 2025年第10期363-383,共21页
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ... To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF. 展开更多
关键词 Aeroengine disks Anomaly distribution Probabilistic damage tolerance Probability of detection(POD) Structural integrity Tenon-groove structures Transfer functions
原文传递
Microstructure,mechanical and thermo-physical properties of Al/Al−27%Si laminated composites 被引量:1
13
作者 Zi-ming LI Zhi-yong CAI +5 位作者 Hao YAN Qian HAN Nan CHEN Ri-chu WANG Xiang PENG Chun ZHANG 《Transactions of Nonferrous Metals Society of China》 2025年第5期1394-1405,共12页
Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were ... Three types of Al/Al−27%Si laminated composites,each containing 22%Si,were fabricated via hot pressing and hot rolling.The microstructures,mechanical properties and thermo-physical properties of these composites were investigated.The results demonstrated that the three laminated composites exhibited similar microstructural features,characterized by well-bonded interfaces between the Al layer and the Al−27%Si alloy layer.The tensile and flexural strengths of the composites were significantly higher than those of both Al−22%Si and Al−27%Si alloys.These strengths increased gradually with decreasing the layer thickness,reaching peak values of 222.5 and 407.4 MPa,respectively.Crack deflection was observed in the cross-sections of the bending fracture surfaces,which contributed to the enhanced strength and toughness.In terms of thermo-physical properties,the thermal conductivity of the composites was lower than that of Al−22%Si and Al−27%Si alloys.The minimum reductions in thermal conductivity were 6.8%and 0.9%for the T3 laminated composite,respectively.Additionally,the coefficient of thermal expansion of the composites was improved,exhibiting varying temperature-dependent behaviors. 展开更多
关键词 electronic packaging material laminated composite high-silicon aluminum alloy mechanical property thermo-physical property
在线阅读 下载PDF
Multi-objective optimization of microwave power transmission system architecture with engineering consideration
14
作者 DONG Shiwei SHINOHARA Naoki 《中国空间科学技术(中英文)》 北大核心 2025年第4期114-122,共9页
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow... In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future. 展开更多
关键词 space solar power satellite(SSPS) microwave power transmission(MPT) multi-objective function beam collection efficiency(BCE) system engineering
在线阅读 下载PDF
Simulation and Experiment of Windage Power Loss of A Shrouded Spiral Bevel Gears under Oil Injection Lubrication 被引量:1
15
作者 Bo Li Kai Rong +4 位作者 Xuyang Zhang Sanmin Wang U-Xuan Tan Xuanyuan Su Laifa Tao 《Chinese Journal of Mechanical Engineering》 2025年第2期407-426,共20页
During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the tr... During high-speed rotation,the surface of aeronautic spiral bevel gears will generate significant pressure and viscous forces,which will cause a certain amount of windage power loss and reduce the efficiency of the transmission system.Based on the computational fluid dynamics,this paper analyzes the windage power loss of a single spiral bevel gear and a spiral bevel gear pair under oil injection lubrication.In addition,the shroud is used to suppress gear windage loss,and the clearance size and opening angle of the designed shroud are optimized.Finally,by comparing and analyzing the experimental results,the following conclusions were obtained:(1)For a single gear,the speed is the most important factor affecting windage loss,followed by the hand of spiral,and rotation direction;(2)For gear pairs,under oil injection lubrication,the input speed has the greatest impact on windage power loss,followed by the influence of oil injection port speed,temperature and oil injection port pressure;(3)Installing a shroud is an effective method to reduce windage power loss;(4)In the pure air phase,the smaller the clearance between the shroud and the gear surface,and the smaller the radial direction between the shroud and the shaft,the better the effect of reducing windage;(5)In the two-phase flow of oil and gas,it is necessary to design oil drainage holes on the shroud to ensure the smooth discharge of lubricating oil and improve the drag reduction effect. 展开更多
关键词 Computational fluid dynamics(CFD) Windage power loss Spiral bevel gear SHROUD Oil injection lubrication
在线阅读 下载PDF
Advances in the use of carbon materials for lithium-air batteries
16
作者 LEI Yu ZHONG Yu +3 位作者 LI Yi-shuo LI Tao ZHOU Zhuo-hui QIN Lei 《新型炭材料(中英文)》 北大核心 2025年第4期909-930,共22页
Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decom... Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs. 展开更多
关键词 Lithium-air battery Carbon materials Air cathode Modified carbon electrode Oxygen crossover
在线阅读 下载PDF
Synergy of strength-ductility in a novel Al-Zn-Mg-Cu-Zr-Sc-Hf alloy through optimizing hierarchical microstructures
17
作者 Mingdong Wu Daihong Xiao +5 位作者 Shuo Yuan Zeyu Li Xiao Yin Juan Wang Lanping Huang Wensheng Liu 《Journal of Materials Science & Technology》 2025年第9期105-122,共18页
The strength improvement in the heat-treatable Al-Zn-Mg-Cu alloys is generally achieved by increasing the volume fraction of nanoprecipitates and reducing the grain size.However,utilizing one of them usu-ally leads to... The strength improvement in the heat-treatable Al-Zn-Mg-Cu alloys is generally achieved by increasing the volume fraction of nanoprecipitates and reducing the grain size.However,utilizing one of them usu-ally leads to a drastic decrease in ductility.Herein,we architect a hierarchical microstructure integrating bimodal grain structures,nanoprecipitates,and hard-brittle coarse particles wrapped by ductility coarse grain(CG)bands via conventional cold rolling(CR)deformation and heat treatment methods to break the strength-ductility dilemma in the Al-8.89Zn-1.98Mg-2.06Cu-0.12Zr-0.05Sc-0.05Hf(wt.%)alloy.The results reveal that the coupling of high-volume fraction(∼1.2%)nanoprecipitates,∼52%narrow CG bands,and most coarse particles encapsulated by CG bands contribute to the 45%CR sample with outstanding over-all mechanical properties(a tensile strength of 655 MPa,a yield strength of 620 MPa,and an elongation of 15.5%).Microstructure-based strength analysis confirms that the high strength relates to a trade-offbetween the hierarchical features,namely high-volume fraction nanoprecipitates to counterbalance the strength loss caused by grain coarsening.The excellent ductility is due to the introduction of medium CG content with a narrow width that can trigger a cross-scale strain distribution during plastic deforma-tion,suppressing the catastrophic failure in the fine grain(FG)regions and facilitating the dimple fracture along the CG bands.This study proposes a feasible approach for tailoring hierarchical microstructures in Al-Zn-Mg-Cu alloys to achieve a superior strength-ductility combination. 展开更多
关键词 Al-Zn-Mg-Cu alloy Bimodal grain structures Nanoprecipitates Coarse particles Mechanical properties
原文传递
Force model based on heterogeneous components decoupling and machining behaviors of ultrasonic grinding continuous fiber-reinforced MMCs
18
作者 Tao CHEN Shandong FENG +3 位作者 Chunchao LIN Wenfeng DING Biao ZHAO Jiuhua XU 《Chinese Journal of Aeronautics》 2025年第9期520-539,共20页
Continuous Fiber-reinforced Metal Matrix Composites(CFMMCs),such as Si C fiberreinforced TC17 matrix composites(SiC_(f)/TC17),are renowned for their exceptional mechanical properties.However,their heterogeneous compos... Continuous Fiber-reinforced Metal Matrix Composites(CFMMCs),such as Si C fiberreinforced TC17 matrix composites(SiC_(f)/TC17),are renowned for their exceptional mechanical properties.However,their heterogeneous compositions present significant machining challenges,including fiber pullout,matrix cracking,and accelerated tool wear.Ultrasonic Vibration-Assisted Grinding(UVAG)has proven to be an effective technique for overcoming these challenges.The material removal mechanisms in UVAG,especially in composites with both ductile and brittle phases,remain poorly understood.To explore these issues,UVAG and Conventional Grinding(CG)experiments were conducted on SiC_(f)/TC17 along two grinding directions:fiber's transverse direction(FT)and fiber's longitudinal direction(FL).This paper aims to provide a new dynamic mechanical model and shed light on the complex removal mechanisms in CFMMCs,which are characterized by a near one-to-one alternation of ductile and brittle phases.The findings reveal that UVAG reduces fiber damage and surface roughness compared to CG,especially when grinding along FT.UVAG lowers normal(F_(n))and tangential grinding forces(F_(t))by 15.3%and 12.3%,respectively.This highlights UVAG's potential for improving the machinability of complex materials like CFMMCs.The proposed grinding force model closely matches the experimental results.This paper hopes to support the precision abrasive machining of CFMMCs,a kind of complex and highly anisotropic composite material,and promote their application in the fields such as aerospace. 展开更多
关键词 Continuous fiber-reinforced metal matrix composites Heterogeneous composition Ultrasonic vibration-assisted grinding Removal mechanism Dynamic mechanical model
原文传递
Piezo-Photocatalytic Technology Based on Bismuth Ferrite(Bi_(2)Fe_(4)O_(9))for Degradation of Reactive Dye KN-R
19
作者 ZHU Feishi HU Chunyan LIU Baojiang 《Journal of Donghua University(English Edition)》 2025年第1期1-11,共11页
Dyeing wastewater poses a serious threat to environmental protection and industrial development.The piezoelectric effect can be used to optimize the band structure of semiconductors and improve the photon efficiency o... Dyeing wastewater poses a serious threat to environmental protection and industrial development.The piezoelectric effect can be used to optimize the band structure of semiconductors and improve the photon efficiency of photocatalysts.Bi_(2)Fe_(4)O_(9),a narrow gap semiconductor with piezoelectric effect,was prepared by a hydrothermal synthesis method for the degradation of reactive dye KN-R.The results show that the degradation efficiency of KN-R can be significantly improved by piezo-photocatalysis,and the degradation rate constant of piezo-photocatalysis k_(pi-ph)is about 3.4 times as large as the degradation rate constant of piezoelectric catalysis k_(pi)and about 2.6 times as large as the degradation rate constant of photocatalysis k_(ph).At a pH value of 3 and a lower KN-R mass concentration(60 mg/L),a higher degradation efficiency(98.5%)is achieved.CO_(3)^(2-)and cationic surfactant(CTAB)inhibit the degradation of KN-R.It is proved that the contributions of different active species to the degradation of KN-R follow the order:·OH,·O_(2)^(-),h^(+),and^(1)O_(2).The possible mechanism of piezo-photocatalytic degradation of KN-R was discussed.The photoexcitation generates a large amount of free charges,and the piezoelectric effect modulates the energy band structure of Bi_(2)Fe_(4)O_(9)and promotes the separation of photogenerated electron-hole pairs.The synergistic effect of the two factors significantly improves the degradation efficiency of KN-R. 展开更多
关键词 Bi_(2)Fe_(4)O_(9) piezo-photocatalysis DEGRADATION wastewater treatment reactive dye KN-R
在线阅读 下载PDF
Surface integrity characterization of thirdgeneration nickel-based single crystal blade tenons after ultrasonic vibration-assisted grinding
20
作者 Biao ZHAO Hexu YOU +3 位作者 Qing MIAO Wenfeng DING Ning QIAN Jiuhua XU 《Chinese Journal of Aeronautics》 2025年第1期235-253,共19页
Machined surface integrity of workpieces in harsh environments has a remarkable influence on their performance.However,the complexity of the new type of machining hinders a comprehensive understanding of machined surf... Machined surface integrity of workpieces in harsh environments has a remarkable influence on their performance.However,the complexity of the new type of machining hinders a comprehensive understanding of machined surface integrity and its formation mechanism,thereby limiting the study of component performance.With increasing demands for high-quality machined workpieces in aerospace industry applications,researchers from academia and industry are increasingly focusing on post-machining surface characterization.The profile grinding test was conducted on a novel single-crystal superalloy to simulate the formation of blade tenons,and the obtained tenons were characterized for surface integrity elements under various operating conditions.Results revealed that ultrasonic vibration-assisted grinding(UVAG)led to multiple superpositions of abrasive grain trajectories,causing reduced surface roughness(an average reduction of approximately29.6%)compared with conventional grinding.After examining the subsurface layer of UVAG using transmission electron microscopy,the results revealed that the single-crystal tenon grinding subsurface layer exhibited a gradient evolution from the near-surface to the substrate.This evolution was characterized by an equiaxed nanocrystalline layer measuring 0.34μm,followed by a submicrocrystalline grain-forming zone spanning 0.6μm and finally,a constituent phase-twisted dis-torted deformation zone over 0.62μm.Under normal grinding conditions,the tenon exhibited low surface hardening(not exceeding 15%),and residual compressive stresses were observed on its surface.In cases where grinding burns occurred,a white layer appeared on the tenon's surface,which demonstrated varying thicknesses along the teeth from top to root due to thermal-force-structural coupling effects.Additionally,these burns introduced residual tensile stresses on the tenon's surface,potentially substantially affecting its fatigue life.This paper enhances our understanding of UVAG processes and establishes a foundation for their application in manufacturing singlecrystal turbine blades for next-generation aero-turbine engines. 展开更多
关键词 Single-crystal blade tenon Seeded gel abrasives Ultrasonic vibration-assisted profile grinding Surface integrity
原文传递
上一页 1 2 71 下一页 到第
使用帮助 返回顶部