The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygena...The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygenase (cADO), which catalyzes the conversion of Cn fatty aldehyde to its corresponding Cn-1 alk(ale)ne, is a key enzyme in that pathway. Due to its low activity, alk(a/e)ne production by cADO is an inefficient process. Previous biochemical and structural investi. gations of cADO have provided some information on its catalytic reaction. However, the details of its cata- lytic processes remain unclear. Here we report five crystal structures of cADO from the Synechococcus elongates strain PCC7942 in both its iron-free and iron-bound forms, representing different states during its catalytic process. Structural comparisons and functional enzyme assays indicate that Giu144, one of the iron-coordinating residues, plays a vital role in the catalytic reaction of cADO. Moreover, the helix where Glu144 resides exhibits two distinct conformations that correlates with the different binding states of the di-iron center in cADO structures. Therefore, our results provide a structural explanation for the highly labile feature of cADO di-iron center, which we pro- posed to be related to its low enzymatic activity. On the basis of our structural and biochemical data, a possible catalytic process of cADO was proposed, which could aid the design of cADO with improved activity.展开更多
基金We would like to thank Yi Han and Shengquan Liu at the Institute of Biophysics, CAS and the staffs at Shanghai Synchrotron Radiation Facility and Photo Factory, Japan, respectively, for help during X-ray data collection. We also thank Wei Shao at Beijing Center for Physical and Chemical Analysis for help with the GC analysis, Zhen Xue at Institute of Botany, CAS for providing help for the GC-QqQ- MS/MS analysis, and Hongzhi Zhang at Institute of Geographic Sciences and Natural Resources Research, CAS for technical support with the metal content analysis by ICP-OES. This work was supported by the National Basic Research Program (973 Program) (Nos. 2011CBA00902 and 2011CBA00907), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08020302), National Natural Science Foundation of China(Grant Nos. 31021062 and 31170765), and CAS Cross and Coop- eration Team for Scientific Innovation (Y31102110A).
文摘The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygenase (cADO), which catalyzes the conversion of Cn fatty aldehyde to its corresponding Cn-1 alk(ale)ne, is a key enzyme in that pathway. Due to its low activity, alk(a/e)ne production by cADO is an inefficient process. Previous biochemical and structural investi. gations of cADO have provided some information on its catalytic reaction. However, the details of its cata- lytic processes remain unclear. Here we report five crystal structures of cADO from the Synechococcus elongates strain PCC7942 in both its iron-free and iron-bound forms, representing different states during its catalytic process. Structural comparisons and functional enzyme assays indicate that Giu144, one of the iron-coordinating residues, plays a vital role in the catalytic reaction of cADO. Moreover, the helix where Glu144 resides exhibits two distinct conformations that correlates with the different binding states of the di-iron center in cADO structures. Therefore, our results provide a structural explanation for the highly labile feature of cADO di-iron center, which we pro- posed to be related to its low enzymatic activity. On the basis of our structural and biochemical data, a possible catalytic process of cADO was proposed, which could aid the design of cADO with improved activity.