Radio frequency(RF)cavities for advanced storage rings,also known as diffraction-limited storage rings,are under development.To this end,a competitive and promising approach involves normal-conducting continuous wave ...Radio frequency(RF)cavities for advanced storage rings,also known as diffraction-limited storage rings,are under development.To this end,a competitive and promising approach involves normal-conducting continuous wave technology.The design and preliminary test of a 499.654 MHz RF cavity for the Wuhan Advanced Light Source(WALS)based on specific beam parameters were conducted at the SSRF.Multi-objective evolutionary algorithms have been utilized to optimize RF properties,such as the power loss and power density,resulting in better performance in the continuous wave mode.Further improvements were made to suppress multipacting effects in the working area.To operate stably with the beam,higher-order mode dampers were applied to better address the coupling bunch instability than in previous designs,along with thermal analysis to achieve the desired RF performance.Comprehensive simulation studies demonstrated the stable operation of the RF cavity at the defined beam parameters in the WALS design.A prototype RF cavity was then developed,and the RF performance results in a low-power test showed good agreement with the design and simulation,exhibiting readiness for high-power experiments and operation.展开更多
The barocaloric effect is considered as one of the most promising refrigeration with the potential to replace traditional gas compression refrigeration.One of the main obstacles to the application of barocaloric mater...The barocaloric effect is considered as one of the most promising refrigeration with the potential to replace traditional gas compression refrigeration.One of the main obstacles to the application of barocaloric materials lies in the requirement for high driving pressures.In this paper,we report on the barocaloric effect of Pb_(3)(VO_(4))_(2),which exhibits a ferroelastic transition from a high-temperature trigonal structure to a low-temperature monoclinic structure at 357 K,accompanied by a substantial volume change.The entropy change induced by hydrostatic pressure can reach up 14 J·kg^(-1)·K^(-1)under a relatively low pressure of 80 MPa.This work is expected to expand the selection range of barocaloric materials.展开更多
Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge densit...Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.展开更多
CoCrFeNi high entropy alloy(HEA)has attracted extensive attention due to its excellent corrosion resistance,but the low strength limits its engineering application prospects.In order to develop CoCrFeNi based HEAs wit...CoCrFeNi high entropy alloy(HEA)has attracted extensive attention due to its excellent corrosion resistance,but the low strength limits its engineering application prospects.In order to develop CoCrFeNi based HEAs with high strength,ductility and corrosion resistance,the effects of Zr content on the microstructure,mechanical properties and corrosion resistance of heterogeneous CoCrFeNiZr_(x)(x=0,0.25,0.5 and 1)HEAs were investigated in this work.The results indicate that the increase of Zr content can significantly affect the phase stability of the alloy,and promote the formation of intermetallic compounds(Ni_(7)Zr_(2)and/or Laves phase)and the transformation of solid solution from face-centered cubic(FCC)structure(x=0,0.25 and 0.5)to body-centered cubic(BCC)structure(x=1).Reasonable control of the Zr content can endow the alloy excellent comprehensive properties.Especially,for CoCrFeNiZr_(0.25) alloy,composed of FCC matrix and a small amount of Ni_(7)Zr_(2)phases,the yield strength(~655 MPa)is increased by nearly four times higher than that of Zr-free alloy,and it also has good ductility(fracture stain>50%).Meanwhile,the corrosion resistance of CoCrFeNiZr_(0.25) alloy is better than that of SS304.The EIS results show that the addition of Zr reduces the stability of the passive film on the alloy,which can be related to the content of the beneficial oxide in the passive film and the thickness of the passive film through XPS analysis.Moreover,the work functions of different phases in CoCrFeNiZr_(x)alloys were obtained by firstprinciples calculations,which further confirmed the selective corrosion mechanism of the CoCrFeNiZr_(x) alloy combining the experimental results.展开更多
The WC/CoCrFeNiAl0.2 high-entropy alloy(HEA)composites were prepared through high-gravity combustion synthesis.The preparation method is presented below.First,using a designed suitable multiphase thermite system,the m...The WC/CoCrFeNiAl0.2 high-entropy alloy(HEA)composites were prepared through high-gravity combustion synthesis.The preparation method is presented below.First,using a designed suitable multiphase thermite system,the molten CoCrFeNiAl0.2 HEA was fabricated using low-cost metal oxides.The molten HEA was subsequently infiltrated into the WC layer to fabricate WC/CoCrFeNiAl0.2 composites in a highgravity field.The porosity of the WC/CoCrFeNiAl0.2 composites was down-regulated,and their compressive yield strength was up-regulated when the high-gravity field was increased from 600g to 1500g because this infiltration process of a HEA melt into the WC layer is driven by centrifugal force.The WC particles in the composites exhibited a gradient distribution along the direction of the centrifugal force,which was attributed to the combined action of the high-gravity field and the temperature gradient field.The Vickers hardness of the sample was down-regulated from 9.53 to 7.41 GPa along the direction of the centrifugal force.展开更多
The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization meth...The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization method.In this paper,a short-cut optimization method with high efficiency and effectiveness is introduced for both conventional and electric air-cycle refrigeration systems.Based on the system characteristics,a four-layer parameter matching algorithm is designed which avoids computational difficulty caused by simultaneous equations.Fuel penalty is chosen as the objective function of optimization;design variables are reduced based on sensitivity analysis to improve optimization efficiency.The results show that the 3-variable optimization of the conventional air-cycle refrigeration system can obtain almost the same results as the traditional 6-variable optimization in that these two optimizations can both significantly reduce the fuel penalty.However,the computer running time of the 3-variable optimization is much shorter than that of the 6-variable optimization.The optimal fuel penalty of the electric air-cycle refrigeration system is lower than that of the conventional one.This study can provide reference for optimizing the aircycle refrigeration system of aircraft.展开更多
In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffus...In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffusion selectivity of N2 and CH4,Grand Canonical Monte Carlo and molecular dynamic methods were used to obtain equilibrium adsorption isotherms and mean square displacements of N2 and CH4 on activated carbon with different pore sizes.Research results showed that the difference in adsorption isosteric heat of N2 and CH4 at the pore size of 0.46 nm is the largest,which is 5.759 and 7.03 kcal·mol^-1(1 cal=4.184 J),respectively.Activated carbon with pore size of 0.46 nm has the best N2 and CH4 adsorption selectivity,while its diffusion selectivity is not obvious.展开更多
AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize...AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize the composition and microstructure of the treated samples. The results show that after two cryogenic treatments, the quantity of the precipitate hardening β phase increases, and the sizes of the precipitates are refined from 8-10μm to 2-4μm. This is expected to be due to the decreased solubility of aluminum in the matrix at low temperature and the significant plastic deformation owing to internal differences in thermal contraction between phases and grains. The polycrystalline matrix is also noticeably refined, with the sizes of the subsequent nanocrystalline grains in the range of 50-100 nm. High density dislocations are observed to pile up at the grain boundaries, inducing the dynamic recrystallization of the microstructure, leading to the generation of a nanocrystalline grain structure. After two deep cryogenic treatments, the tensile strength and elongation are found to be substantially increased, rising from 243 MPa and 4.4% of as-cast state to 299 MPa and 5.1%.展开更多
The aluminum alloy scroll is one of the key parts of the scroll compressors widely used in the air-conditioning,refrigeration,and heat pump systems.In this work,the semi-solid squeeze casting(SSSC)process was used to ...The aluminum alloy scroll is one of the key parts of the scroll compressors widely used in the air-conditioning,refrigeration,and heat pump systems.In this work,the semi-solid squeeze casting(SSSC)process was used to fabricate the aluminum alloy scroll.The effects of process parameters including the pouring temperature,mold temperature,and squeezing velocity on the filling and solidification behaviors of the alloys were investigated through simulations based on the power law cut-off(PLCO)material model.Results show that there is a significant increase in the flow velocity of the slurry,and the area of the high-speed region enlarges with the increase of the pouring temperature.The homogeneity of the temperature and velocity fields in the slurry is improved with an increase in mold temperature.Both the filling time and its variation rate decrease with an increase in squeezing velocity.The maximum solidification time exhibits a linear variation with the increase in pouring temperature.The shrinkage area is decreased by increasing the mold temperature.The optimal process parameters of the SSSC process were obtained from simulation analysis,which are the pouring temperature of 595°C,mold temperature of 350°C,and squeezing velocity of 0.3 m·s-1.Moreover,the qualified scroll casting was fabricated using the SSSC process under the optimal process parameters.展开更多
In the storage ring RF system of Shanghai Synchrotron Radiation Facility,the clock distribution and the local oscillator are two parts of the digital low level radio frequency hardware board.In this paper,we designed ...In the storage ring RF system of Shanghai Synchrotron Radiation Facility,the clock distribution and the local oscillator are two parts of the digital low level radio frequency hardware board.In this paper,we designed and produced the clock distribution and the local oscillator board using the AD9858 and AD9510 chips.The results show that the phase noise of the local oscillator signal is lower than 100dBc/Hz with 50 kHz offset.展开更多
The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The diffe...The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127 W/(m2· K) and 192 W/(m2· K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.展开更多
At cryogenic temperatures,the investigations of magnetic phase transition and magnetocaloric effect in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds were performed.Ho_(2)FeC_(4)and Er_(2)FeC_(4)compounds undergo two magnet...At cryogenic temperatures,the investigations of magnetic phase transition and magnetocaloric effect in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds were performed.Ho_(2)FeC_(4)and Er_(2)FeC_(4)compounds undergo two magnetic phase transitions with the temperature decreasing:from paramagnetic(PM) to ferromagnetic(FM) transition at their respective Curie temperature(Tc) and from FM to antiferromagnetic(AFM) or ferrimagnetic(FIM) transition below 2 K.Tm_(2)FeC_(4)compound exhibits only a second-order PM to FM phase transition at TC=K.Large reversible MCE without hysteresis loss is observed in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds.Particularly,the maximum value of magnetic entropy change(-ASM)is 21.62 J/(kg K) under the magnetic field change(Δ_(μ0)H) of 0-5 T for Er_(2)FeC_(4).The Er_(2)FeC_(4)compound presenting excellent magnetocaloric performance makes it a competitive cryogenic magnetic refrigeration material.展开更多
A new method of high-gravity combustion synthesis(HGCS)followed by post-treatment(PT)is reported for preparing high-performance high-entropy alloys(HEAs),Cr0.9FeNi2.5V0.2Al0.5 alloy,whereby cheap thermite powder is us...A new method of high-gravity combustion synthesis(HGCS)followed by post-treatment(PT)is reported for preparing high-performance high-entropy alloys(HEAs),Cr0.9FeNi2.5V0.2Al0.5 alloy,whereby cheap thermite powder is used as the raw material.In this process,the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field.Then,the master alloy is obtained after cooling.Subsequently,the master alloy is sequentially subjected to conventional vacuum arc melting(VAM),homogenization treatment,cold rolling,and annealing treatment to realize a tensile strength,yield strength,and elongation of 1250 MPa,1075 MPa,and 2.9%,respectively.The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating.Based on the calculation of phase separation kinetics in the high-temperature melt,it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.展开更多
Superoxide dismutase(SOD) is an important antioxidant enzyme in the body. SOD has special physiological activity and is the primary substance for scavenging free radicals in living organisms.However, the expensive and...Superoxide dismutase(SOD) is an important antioxidant enzyme in the body. SOD has special physiological activity and is the primary substance for scavenging free radicals in living organisms.However, the expensive and complex extraction processes, low SOD yield, as well as difficult to store at room temperature have seriously hindered its application pace. Herein, the enzyme mimetic function of Mn-doped ZnS quantum dots(QDs) was discovered. The improved Marklund and McCord method both showed that Mn-doped ZnS QDs possess intrinsic SOD-like activity. The effects of temperature and pH on the mimetic enzyme activity of Mn-doped ZnS QDs have been investigated compared with SOD enzymes.The low cost and easy to synthesize white Mn-doped ZnS QDs with good biocompatibility are expected to be used as a new type of SOD nanozymes in the biology-relevant fields.展开更多
Magnetic entropy change (△SM) and refrigerant capacity (RC) of Ce6Ni2Si3-type Gd6Co1.67Si2.5Geo.5 compounds have been investigated. The Gd6Col.67Si2.5Geo.5 undergoes a reversible second-order phase transition at ...Magnetic entropy change (△SM) and refrigerant capacity (RC) of Ce6Ni2Si3-type Gd6Co1.67Si2.5Geo.5 compounds have been investigated. The Gd6Col.67Si2.5Geo.5 undergoes a reversible second-order phase transition at the Curie temperature Tc = 296 K. The high saturation magnetization leads to a large ASM and the maximal value of △SM is found to be 5.9 J/kg. K around TC for a field change of 0-5 T. A broad distribution of the △SM peak is observed and the full width at half maximum of the △SM peak is about 101 K under a magnetic field of 5 T. The large RC is found around TC and its value is 424 J/kg.展开更多
Structural properties of the organic-inorganic hybrid(C_(2)H_(5)NH_(3))_(2)CuCl_(4) have been investigated by means of x-ray powder diffraction and Rietveld analysis. A structural phase transition from Pbca to Aba2 oc...Structural properties of the organic-inorganic hybrid(C_(2)H_(5)NH_(3))_(2)CuCl_(4) have been investigated by means of x-ray powder diffraction and Rietveld analysis. A structural phase transition from Pbca to Aba2 occurs at T_(4)= 240 K, which results in a paraelectric–ferroelectric phase transition. The release of the Jahn–Teller distortion with increasing temperature toward T_(4) is revealed by the structural analysis.展开更多
Tumor cells usually show abnormally high glycolysis rate to maintain the dynamic balance of energy.The growth of tumor cells can be affected by inhibiting the activity of pyruvate kinase(especially M2-type isozyme,PKM...Tumor cells usually show abnormally high glycolysis rate to maintain the dynamic balance of energy.The growth of tumor cells can be affected by inhibiting the activity of pyruvate kinase(especially M2-type isozyme,PKM2),the rate limiting enzyme of glycolysis.This is helpful to the treatment of tumor.Herein,metal organic frameworks(MOFs) were found to inhibit the activity of PKM2.Nanoscale ZIF-8 was synthesized by standing and ultrasonic method,respectively.The ZIF-8 has the performance of inhibiting PKM2.Further research showed that the inhibition ability was attributed to zinc ion in ZIF-8.Interestingly,the IC_(50) of ZIF-8 on PKM2 was one percent of that of zinc ion.This novel enzyme inhibitor is expected to be used in cancer therapy.展开更多
In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values...In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values.The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from2.5 to 9.3.The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP.The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5,4.5,7.0 and 8.5 which involved a wide pH environment in body fluids.The limit of detection(LOD)for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5.In addition,the sensitive determination of ATP was also achieved by adding copper ions(Cu^2+).The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions.展开更多
Giant reversible magnetocaloric effects and magnetic properties in Euo.9Ro.lTiO3 (R = La, Ce) are investigated. The antiferromagnetic ordering of pure EuTiO3 can significantly change to be ferromagnetic as substitut...Giant reversible magnetocaloric effects and magnetic properties in Euo.9Ro.lTiO3 (R = La, Ce) are investigated. The antiferromagnetic ordering of pure EuTiO3 can significantly change to be ferromagnetic as substitution of La (x = 0.1) and Ce (x = 0.1) ions for Eu2+ ions. The values of -ASM and RC are evaluated to be 10.8 J/(kg.K) and 51.8 J/kg for Euo.gCeo.lTiO3 and 11 J/(kg.K) and 39.3 J/kg for Euo.9Lao.lTiO3 at a magnetic field change of I0 kOe, respectively. The large low-field enhancements of --ASM and RC can be attributed to magnetic phase transition. The giant reversible MCE and large RC suggest that Euo.9Ro.ITiO3 (R = La, Ce) compounds could be promising materials in low temperature and low magnetic field refrigerants.展开更多
Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have e...Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have excellent fluorescence properties for the detection of metal ions.The results showed that the copper ions(Cu^(2+)) and iron ions(Fe^(3+)) in the solution have obvious quenching effect on the fluorescence intensity of Au NCs.The detection range of Fe^(3+) was 0.8-4.5 mmol/L(R^2= 0.992) and 4.5-11.0 mmol/L(R^2= 0.997).And Cu^(2+) has a lower linear range(0.1-1.0 mmol/L,R2= 0.993).When EDTA was added into the reaction system,it was observed that the quenching effect of Cu^(2+) and Fe^(3+)on Au NCs showed different phenomenon.Then,the effect of metal ions on the fluorescence of Au NCs was investigated.The selective detection of Cu(2+) was achieved by EDTA masking of Fe^(3+).In addition,we realized the metal ions detection application of Au NCs in the serum展开更多
基金supported by National Natural Science Foundation of China(Nos.12222513,12105345,12175292,and No.12405178)。
文摘Radio frequency(RF)cavities for advanced storage rings,also known as diffraction-limited storage rings,are under development.To this end,a competitive and promising approach involves normal-conducting continuous wave technology.The design and preliminary test of a 499.654 MHz RF cavity for the Wuhan Advanced Light Source(WALS)based on specific beam parameters were conducted at the SSRF.Multi-objective evolutionary algorithms have been utilized to optimize RF properties,such as the power loss and power density,resulting in better performance in the continuous wave mode.Further improvements were made to suppress multipacting effects in the working area.To operate stably with the beam,higher-order mode dampers were applied to better address the coupling bunch instability than in previous designs,along with thermal analysis to achieve the desired RF performance.Comprehensive simulation studies demonstrated the stable operation of the RF cavity at the defined beam parameters in the WALS design.A prototype RF cavity was then developed,and the RF performance results in a low-power test showed good agreement with the design and simulation,exhibiting readiness for high-power experiments and operation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52301241 and 52271175)。
文摘The barocaloric effect is considered as one of the most promising refrigeration with the potential to replace traditional gas compression refrigeration.One of the main obstacles to the application of barocaloric materials lies in the requirement for high driving pressures.In this paper,we report on the barocaloric effect of Pb_(3)(VO_(4))_(2),which exhibits a ferroelastic transition from a high-temperature trigonal structure to a low-temperature monoclinic structure at 357 K,accompanied by a substantial volume change.The entropy change induced by hydrostatic pressure can reach up 14 J·kg^(-1)·K^(-1)under a relatively low pressure of 80 MPa.This work is expected to expand the selection range of barocaloric materials.
文摘Beam lifetime is dominated by Touschek scattering at the Shanghai Synchrotron Radiation Facility(SSRF).Touschek loss rate is affected by probability for scattering beyond the RF acceptance and the volume charge density of the bench.In the phaseⅡupgrade of the SSRF,a third harmonic superconducting cavity will be used to enhance the Touschek lifetime by lengthening the bunches.The Touschek lifetime improvement factor is affected by the voltage of a harmonic cavity.To stabilize the cavity voltage,a tuning control system was designed to control it.The design of the tuning control system was based on the SSRF third-generation low-level RF control system.Some hardware and specialized algorithms were redesigned to fit the harmonic cavity control.The design of the tuning control system is complete,and the control system has been tested.The test result shows that the fluctuation of amplitude is<±0.34%within 1.5 h,which satisfies the stability requirement.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0405700)the Inner Mongolia Science and Technology Major Project(No.2020ZD0011)。
文摘CoCrFeNi high entropy alloy(HEA)has attracted extensive attention due to its excellent corrosion resistance,but the low strength limits its engineering application prospects.In order to develop CoCrFeNi based HEAs with high strength,ductility and corrosion resistance,the effects of Zr content on the microstructure,mechanical properties and corrosion resistance of heterogeneous CoCrFeNiZr_(x)(x=0,0.25,0.5 and 1)HEAs were investigated in this work.The results indicate that the increase of Zr content can significantly affect the phase stability of the alloy,and promote the formation of intermetallic compounds(Ni_(7)Zr_(2)and/or Laves phase)and the transformation of solid solution from face-centered cubic(FCC)structure(x=0,0.25 and 0.5)to body-centered cubic(BCC)structure(x=1).Reasonable control of the Zr content can endow the alloy excellent comprehensive properties.Especially,for CoCrFeNiZr_(0.25) alloy,composed of FCC matrix and a small amount of Ni_(7)Zr_(2)phases,the yield strength(~655 MPa)is increased by nearly four times higher than that of Zr-free alloy,and it also has good ductility(fracture stain>50%).Meanwhile,the corrosion resistance of CoCrFeNiZr_(0.25) alloy is better than that of SS304.The EIS results show that the addition of Zr reduces the stability of the passive film on the alloy,which can be related to the content of the beneficial oxide in the passive film and the thickness of the passive film through XPS analysis.Moreover,the work functions of different phases in CoCrFeNiZr_(x)alloys were obtained by firstprinciples calculations,which further confirmed the selective corrosion mechanism of the CoCrFeNiZr_(x) alloy combining the experimental results.
基金financially supported by the National Key R&D Program of China (No. 2017YFB0310303)the National Natural Science Foundation of China (No. 51702332)the Key Laboratory of Cryogenics, TIPC, CAS (Nos. CRYOQN201705 and CRYOQN201507)
文摘The WC/CoCrFeNiAl0.2 high-entropy alloy(HEA)composites were prepared through high-gravity combustion synthesis.The preparation method is presented below.First,using a designed suitable multiphase thermite system,the molten CoCrFeNiAl0.2 HEA was fabricated using low-cost metal oxides.The molten HEA was subsequently infiltrated into the WC layer to fabricate WC/CoCrFeNiAl0.2 composites in a highgravity field.The porosity of the WC/CoCrFeNiAl0.2 composites was down-regulated,and their compressive yield strength was up-regulated when the high-gravity field was increased from 600g to 1500g because this infiltration process of a HEA melt into the WC layer is driven by centrifugal force.The WC particles in the composites exhibited a gradient distribution along the direction of the centrifugal force,which was attributed to the combined action of the high-gravity field and the temperature gradient field.The Vickers hardness of the sample was down-regulated from 9.53 to 7.41 GPa along the direction of the centrifugal force.
基金the financial supports from Pre-research Project of National Defense FoundationNational Natural Science Foundation of China(No.51706232)。
文摘The air-cycle refrigeration system is widely used in commercial and military aircraft,and its efficiency greatly affects aircraft performance.Nowadays,this system requires a more efficient design and optimization method.In this paper,a short-cut optimization method with high efficiency and effectiveness is introduced for both conventional and electric air-cycle refrigeration systems.Based on the system characteristics,a four-layer parameter matching algorithm is designed which avoids computational difficulty caused by simultaneous equations.Fuel penalty is chosen as the objective function of optimization;design variables are reduced based on sensitivity analysis to improve optimization efficiency.The results show that the 3-variable optimization of the conventional air-cycle refrigeration system can obtain almost the same results as the traditional 6-variable optimization in that these two optimizations can both significantly reduce the fuel penalty.However,the computer running time of the 3-variable optimization is much shorter than that of the 6-variable optimization.The optimal fuel penalty of the electric air-cycle refrigeration system is lower than that of the conventional one.This study can provide reference for optimizing the aircycle refrigeration system of aircraft.
基金part of the project supported by the Shanxi Coal-bed Methane Joint Research Fund(No.2015012004)。
文摘In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffusion selectivity of N2 and CH4,Grand Canonical Monte Carlo and molecular dynamic methods were used to obtain equilibrium adsorption isotherms and mean square displacements of N2 and CH4 on activated carbon with different pore sizes.Research results showed that the difference in adsorption isosteric heat of N2 and CH4 at the pore size of 0.46 nm is the largest,which is 5.759 and 7.03 kcal·mol^-1(1 cal=4.184 J),respectively.Activated carbon with pore size of 0.46 nm has the best N2 and CH4 adsorption selectivity,while its diffusion selectivity is not obvious.
基金financially supported by the National Natural Science Foundation of China(Nos.51001054,51174099,and 51174098)the Natural Science Foundation of Jiangsu Province,China(No.BK2011533)+2 种基金Open Funds of the State Key Laboratory of Metal Matrix Composites of Shanghai Jiao Tong University(No.mmc-kf12-06)the Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences(No.CRYO201106)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘AZ91 magnesium alloy was subjected to a deep cryogenic treatment. X-ray diffraction (XRD), scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) methods were utilized to characterize the composition and microstructure of the treated samples. The results show that after two cryogenic treatments, the quantity of the precipitate hardening β phase increases, and the sizes of the precipitates are refined from 8-10μm to 2-4μm. This is expected to be due to the decreased solubility of aluminum in the matrix at low temperature and the significant plastic deformation owing to internal differences in thermal contraction between phases and grains. The polycrystalline matrix is also noticeably refined, with the sizes of the subsequent nanocrystalline grains in the range of 50-100 nm. High density dislocations are observed to pile up at the grain boundaries, inducing the dynamic recrystallization of the microstructure, leading to the generation of a nanocrystalline grain structure. After two deep cryogenic treatments, the tensile strength and elongation are found to be substantially increased, rising from 243 MPa and 4.4% of as-cast state to 299 MPa and 5.1%.
基金the China Postdoctoral Science Foundation(Grant No.2018M 643627)the Open Foundation from the CAS Key Laboratory of Cryogenics,TIPC(Grant No.CRYO201810)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.XZY012019003/XZD012019009)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201912).
文摘The aluminum alloy scroll is one of the key parts of the scroll compressors widely used in the air-conditioning,refrigeration,and heat pump systems.In this work,the semi-solid squeeze casting(SSSC)process was used to fabricate the aluminum alloy scroll.The effects of process parameters including the pouring temperature,mold temperature,and squeezing velocity on the filling and solidification behaviors of the alloys were investigated through simulations based on the power law cut-off(PLCO)material model.Results show that there is a significant increase in the flow velocity of the slurry,and the area of the high-speed region enlarges with the increase of the pouring temperature.The homogeneity of the temperature and velocity fields in the slurry is improved with an increase in mold temperature.Both the filling time and its variation rate decrease with an increase in squeezing velocity.The maximum solidification time exhibits a linear variation with the increase in pouring temperature.The shrinkage area is decreased by increasing the mold temperature.The optimal process parameters of the SSSC process were obtained from simulation analysis,which are the pouring temperature of 595°C,mold temperature of 350°C,and squeezing velocity of 0.3 m·s-1.Moreover,the qualified scroll casting was fabricated using the SSSC process under the optimal process parameters.
基金Supported by Shanghai Synchrotron Radiation Facility
文摘In the storage ring RF system of Shanghai Synchrotron Radiation Facility,the clock distribution and the local oscillator are two parts of the digital low level radio frequency hardware board.In this paper,we designed and produced the clock distribution and the local oscillator board using the AD9858 and AD9510 chips.The results show that the phase noise of the local oscillator signal is lower than 100dBc/Hz with 50 kHz offset.
文摘The free piston Stirling engine external combustion system was simulated to investigate the diesel-air combustion characteristics in order to demonstrate its feasibility by computational fluid dynamics(CFD). The different effects on combustion were distinguished by analyzing the combustion burner, the injection position of diesel oil, the front tube arrangement of Stirling heater head and the back fin. The results show that the tilted front tube arrangement of the heater head with the back fin is the best practicable technology while the distance between the diesel nozzle position and the swirler top is 0. Its total heat flux is 15.6 kW, and the average heat transfer coefficients of the front and back tubes are 127 W/(m2· K) and 192 W/(m2· K), respectively. The heat transfer is mainly through convection, and the proportion of radiative heat transfer is only 16.9%. The best combustion efficiency of the free piston Stirling engine external combustion system is 86%.
基金Project supported by the National Natural Science Foundation of China (52171195,52171054)the National Science Foundation for Distinguished Young Scholars (51925605)the Scientific Instrument Developing Project of Chinese Academy of Sciences (YJKYYQ20200075)。
文摘At cryogenic temperatures,the investigations of magnetic phase transition and magnetocaloric effect in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds were performed.Ho_(2)FeC_(4)and Er_(2)FeC_(4)compounds undergo two magnetic phase transitions with the temperature decreasing:from paramagnetic(PM) to ferromagnetic(FM) transition at their respective Curie temperature(Tc) and from FM to antiferromagnetic(AFM) or ferrimagnetic(FIM) transition below 2 K.Tm_(2)FeC_(4)compound exhibits only a second-order PM to FM phase transition at TC=K.Large reversible MCE without hysteresis loss is observed in RE_(2)FeC_(4)(RE=Ho,Er,and Tm) compounds.Particularly,the maximum value of magnetic entropy change(-ASM)is 21.62 J/(kg K) under the magnetic field change(Δ_(μ0)H) of 0-5 T for Er_(2)FeC_(4).The Er_(2)FeC_(4)compound presenting excellent magnetocaloric performance makes it a competitive cryogenic magnetic refrigeration material.
基金the National Natural Science Foundation of China(No.51702332)the Key Research Projects in Gansu Province(No.17YF1GA020)the CAS Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry(Youth Innovation Fund No.CRYOQN201705).
文摘A new method of high-gravity combustion synthesis(HGCS)followed by post-treatment(PT)is reported for preparing high-performance high-entropy alloys(HEAs),Cr0.9FeNi2.5V0.2Al0.5 alloy,whereby cheap thermite powder is used as the raw material.In this process,the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field.Then,the master alloy is obtained after cooling.Subsequently,the master alloy is sequentially subjected to conventional vacuum arc melting(VAM),homogenization treatment,cold rolling,and annealing treatment to realize a tensile strength,yield strength,and elongation of 1250 MPa,1075 MPa,and 2.9%,respectively.The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating.Based on the calculation of phase separation kinetics in the high-temperature melt,it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.
基金the National Natural Science Foundation of China(Nos.61571426,61671435,81630053)Beijing Natural Science Foundation(No.4161003)for financial support
文摘Superoxide dismutase(SOD) is an important antioxidant enzyme in the body. SOD has special physiological activity and is the primary substance for scavenging free radicals in living organisms.However, the expensive and complex extraction processes, low SOD yield, as well as difficult to store at room temperature have seriously hindered its application pace. Herein, the enzyme mimetic function of Mn-doped ZnS quantum dots(QDs) was discovered. The improved Marklund and McCord method both showed that Mn-doped ZnS QDs possess intrinsic SOD-like activity. The effects of temperature and pH on the mimetic enzyme activity of Mn-doped ZnS QDs have been investigated compared with SOD enzymes.The low cost and easy to synthesize white Mn-doped ZnS QDs with good biocompatibility are expected to be used as a new type of SOD nanozymes in the biology-relevant fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11004204 and 51001114), the Knowledge Inno- vation Project of the Chinese Academy of Sciences, and the National Basic Research Program of China (Grant No. 2006CB601101).
文摘Magnetic entropy change (△SM) and refrigerant capacity (RC) of Ce6Ni2Si3-type Gd6Co1.67Si2.5Geo.5 compounds have been investigated. The Gd6Col.67Si2.5Geo.5 undergoes a reversible second-order phase transition at the Curie temperature Tc = 296 K. The high saturation magnetization leads to a large ASM and the maximal value of △SM is found to be 5.9 J/kg. K around TC for a field change of 0-5 T. A broad distribution of the △SM peak is observed and the full width at half maximum of the △SM peak is about 101 K under a magnetic field of 5 T. The large RC is found around TC and its value is 424 J/kg.
基金supported by the National Natural Science Foundation of China (Grant No. 51925605)Fujian Institute of Innovation,Chinese Academy of Sciences(Grant No. FJCXY18040303)the Youth Innovation Promotion of the Chinese Academy of Sciences (Grant No. 2013004)。
文摘Structural properties of the organic-inorganic hybrid(C_(2)H_(5)NH_(3))_(2)CuCl_(4) have been investigated by means of x-ray powder diffraction and Rietveld analysis. A structural phase transition from Pbca to Aba2 occurs at T_(4)= 240 K, which results in a paraelectric–ferroelectric phase transition. The release of the Jahn–Teller distortion with increasing temperature toward T_(4) is revealed by the structural analysis.
基金financial support from the National Natural Science Foundation of China (Nos.61975214, U20A20335,81630053)Beijing Natural Science Foundation (Nos.4202075, 2202057, 7212208)。
文摘Tumor cells usually show abnormally high glycolysis rate to maintain the dynamic balance of energy.The growth of tumor cells can be affected by inhibiting the activity of pyruvate kinase(especially M2-type isozyme,PKM2),the rate limiting enzyme of glycolysis.This is helpful to the treatment of tumor.Herein,metal organic frameworks(MOFs) were found to inhibit the activity of PKM2.Nanoscale ZIF-8 was synthesized by standing and ultrasonic method,respectively.The ZIF-8 has the performance of inhibiting PKM2.Further research showed that the inhibition ability was attributed to zinc ion in ZIF-8.Interestingly,the IC_(50) of ZIF-8 on PKM2 was one percent of that of zinc ion.This novel enzyme inhibitor is expected to be used in cancer therapy.
基金the National Natural Science Foundation of China(Nos.21701015,61975214,21811530054,61671435)Beijing Natural Science Foundation(No.4202075)the National Key R&D Program(No.2018YFC0115500)。
文摘In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values.The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from2.5 to 9.3.The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP.The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5,4.5,7.0 and 8.5 which involved a wide pH environment in body fluids.The limit of detection(LOD)for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5.In addition,the sensitive determination of ATP was also achieved by adding copper ions(Cu^2+).The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0702704)the National Natural Science Foundation of China(Grant Nos.11504266,51676198,and 51371075)+1 种基金the Tianjin Natural Science Foundation,China(Grant No.17JCQNJC02300)the National Key Foundation for Exploring Scientific Instrument of China(Grant No.2014YQ120351)
文摘Giant reversible magnetocaloric effects and magnetic properties in Euo.9Ro.lTiO3 (R = La, Ce) are investigated. The antiferromagnetic ordering of pure EuTiO3 can significantly change to be ferromagnetic as substitution of La (x = 0.1) and Ce (x = 0.1) ions for Eu2+ ions. The values of -ASM and RC are evaluated to be 10.8 J/(kg.K) and 51.8 J/kg for Euo.gCeo.lTiO3 and 11 J/(kg.K) and 39.3 J/kg for Euo.9Lao.lTiO3 at a magnetic field change of I0 kOe, respectively. The large low-field enhancements of --ASM and RC can be attributed to magnetic phase transition. The giant reversible MCE and large RC suggest that Euo.9Ro.ITiO3 (R = La, Ce) compounds could be promising materials in low temperature and low magnetic field refrigerants.
基金financial support from the National Natural Science Foundation of China(Nos.61571426,61671435)the National Key Technology R&D Program(No.2015BAI23H00)+1 种基金Beijing Natural Science Foundation(No.4161003)Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
文摘Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have excellent fluorescence properties for the detection of metal ions.The results showed that the copper ions(Cu^(2+)) and iron ions(Fe^(3+)) in the solution have obvious quenching effect on the fluorescence intensity of Au NCs.The detection range of Fe^(3+) was 0.8-4.5 mmol/L(R^2= 0.992) and 4.5-11.0 mmol/L(R^2= 0.997).And Cu^(2+) has a lower linear range(0.1-1.0 mmol/L,R2= 0.993).When EDTA was added into the reaction system,it was observed that the quenching effect of Cu^(2+) and Fe^(3+)on Au NCs showed different phenomenon.Then,the effect of metal ions on the fluorescence of Au NCs was investigated.The selective detection of Cu(2+) was achieved by EDTA masking of Fe^(3+).In addition,we realized the metal ions detection application of Au NCs in the serum