By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we rep...By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.展开更多
Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated thro...Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated through a leaching experiment and kinetic modeling,and the effects of reaction time,HCl concentration,solid-to-liquid ratio,and reaction temperature on the leaching rate of mag-nesium were comprehensively studied.Results show that the suitable leaching conditions for magnesium in CNTs are 2 M HCl,a solid-to-liquid ratio of 50 g·L^(−1),and 90℃,at which the maximum leaching rate of magnesium is as high as 83.88%.A modified shrinking core model can well describe the leaching kinetics of magnesium.The dissolution of magnesium was dominated by a combination of chemical reaction and product layer diffusion,with a calculated apparent activation energy of 77.51 kJ·mol^(−1).This study demonstrates the feasibil-ity of using CNTs as a media for CO_(2)mineral sequestration.展开更多
An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars in...An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars incorporating crystalline admixtures(CAs)under various conditions,including water immersion,limewater soaking,and wet-dry cycles,with varying CA dosages and crack widths.The experimental results indicate that cement possesses inherently self-healing capability.Limewater environments inhibits healing compared with water immersion;however,wet-dry cycles enhance the effectiveness of higher CA dosages.Increasing the CA content can not improve healing performance,and wide cracks(0.3 mm)substantially reduce the intrinsic self-healing potential of cement.展开更多
To convert carbon dioxide into high-value-added liquid products such as formate with renewable electricity(CO_(2)RR)is a promising strategy of CO_(2) resource utilization.The key is to find a highly efficient and sele...To convert carbon dioxide into high-value-added liquid products such as formate with renewable electricity(CO_(2)RR)is a promising strategy of CO_(2) resource utilization.The key is to find a highly efficient and selective electrocatalyst for CO_(2)RR.Herein,clustered Bi_(28)O_(32)(SO_(4))_(10) was found to show a high formate Faradaic efficiency(FE_(formate))of 96.2%at–1.1 V_(RHE) and FE_(formate) above 90%in a wide potential range from–0.9 to–1.3 V_(RHE) in H-type cell,surpassing the corresponding layered Bi_(2)O_(2)SO_(4)(85.6%FE_(formate) at–1.1 V_(RHE)).The advantageous CO_(2)RR performance of Bi_(28)O_(32)(SO_(4))_(10) over Bi_(2)O_(2)SO_(4) was ascribed to a special two-step in-situ reconstruction process,consisting of Bi_(28)O_(32)(SO_(4))_(10)→Bi_(-2.1)/Bi_(2)O_(2)CO_(3)→Bi_(-2.1)/Bi_(-0.6) during CO_(2)RR.It gave metallic Bi_(-2.1) with lattice distortion of–2.1%at the first step and metallic Bi_(-0.6) with lattice distortion of–0.6%at the second step.In contrast,the usual layered Bi_(2)O_(2)SO_(4) only formed metallic Bi_(-0.6) with weaker lattice strain.The metallic Bi_(-2.1) revealed higher efficiency in stabilizing*CO_(2) intermediate and reducing the energy barrier of CO_(2)RR,while suppressing hydrogen evolution reaction and CO formation.This work delivers a high-performance cluster-type Bi_(28)O_(32)(SO_(4))_(10) electrocatalyst for CO_(2)RR,and elucidates the origin of superior performance of clustered Bi_(28)O_(32)(SO_(4))_(10) electrocatalysts compared with layered Bi_(2)O_(2)SO_(4).展开更多
Four typical admixtures,polycarboxylate superplasticiser(PCE),tartaric acid(TA),sorbitol and polyacrylamide(PAM),were selected to systematically investigate their regulatory mechanisms on the formation of ettringite t...Four typical admixtures,polycarboxylate superplasticiser(PCE),tartaric acid(TA),sorbitol and polyacrylamide(PAM),were selected to systematically investigate their regulatory mechanisms on the formation of ettringite through Fourier transform infrared spectroscopy,X-ray diffraction,particle size analysis and nucleation kinetic model.The experimental results indicate that the admixtures alter the formation of ettringite through physical adsorption,complexation and solution viscosity modulation without changing its chemical structure.Low concentrations of PCE inhibit size growth by forming an adsorption layer on the surface of ettringite,whereas high concentrations of PCE alter the size change of ettringite by modulating the distribution of ionic concentrations.TA significantly reduces the size of ettringite by complexing Ca^(2+).Sorbitol and PAM promote the local growth of ettringite at low concentrations,leading to larger sizes.But at high concentrations,the size growth of ettringite is inhibited due to the increase in viscosity or the enhancement of complexation.Matlab nucleation kinetic modelling further shows that the addition of admixtures enhances the initial nucleation during ettringite synthesis,with values ranging from 14.45%to 114.25%.However,the subsequent nucleation rate of ettringite is significantly affected,decreasing by 12.79%to 71.74%.The results provide a theoretical basis for the design of ettringite materials and the optimisation of the application of admixtures.展开更多
Biostimulation has been proven to be an available approach for microbially induced calcium carbonate precipitation(MICP).However,biostimulation may not be as effective as bioaugmentation in some unfavorable situations...Biostimulation has been proven to be an available approach for microbially induced calcium carbonate precipitation(MICP).However,biostimulation may not be as effective as bioaugmentation in some unfavorable situations.In this study,the feasibility of biochar-assisted MICP for improving the shear strength of calcareous sand is investigated.The optimization of cementation solution for biostimulated MICP is first determined through a series of unconfined compressive tests.The shear characteristics of biocemented calcareous sand,enhanced by biochar and treated through biostimulation,are then assessed using consolidated undrained(CU)shear triaxial tests.To characterize the shear strength of biocemented sand under low effective normal stress,both Mohr-Coulomb failure envelopes and nonlinear failure envelopes were employed.Meanwhile,the current study also compared and analyzed two distinct stress states:maximum principal stress ratio(σ'_(1)/σ'_(3)max)and Skempton’s pore pressure parameter A=0,to identify an appropriate failure criterion for determination of the shear strength parameters.Furthermore,the microscopic features and post-failure characteristics of biochar-assisted calcareous sand were examined and discussed.The findings indicate that biochar can contribute to an increase in cementation content by serving as additional nucleation sites.The study may provide valuable insights into the potential of biochar-assisted MICP for enhancing the biostimulation approach.展开更多
The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,...The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,is responsible for the viscoelastic mechanism of cement-based materials.In this study,a molecular model of C-S-H was developed to explain the stress relaxation characteristics of C-S-H at different initial deformation states,Ca/Si ratios,temperatures,and water contents,which cannot be accessed experimentally.The stress relaxation of C-S-H occurs regardless of whether it is subjected to initial shear,tensile,or compressive deformation,and shows a heterogeneous characteristic.Water plays a crucial role in the stress relaxation process.A large Ca/Si ratio and high temperature reduce the cohesion between the calcium-silicate layer and the interlayer region,and the viscosity of the interlayer region,thereby accelerating the stress relaxation of C-S-H.The effect of the hydrogen bond network and the morphology of C-S-H on the evolution of the stress relaxation characteristics of C-S-H at different water contents was elucidated by nonaffine mean squared displacement.Our results shed light on the stress relaxation characteristics of C-S-H from a microscopic perspective,bridging the gap between the microscopic phenomena and the underlying atomic-level mechanisms.展开更多
In this work,Ag/Ag_(2)Se composite films with excellent thermoelectric(TE)properties and flexibility are prepared based on a simple one-pot method.By adjusting the nominal ratios of Ag/Se,an optimal Ag/Ag_(2)Se compos...In this work,Ag/Ag_(2)Se composite films with excellent thermoelectric(TE)properties and flexibility are prepared based on a simple one-pot method.By adjusting the nominal ratios of Ag/Se,an optimal Ag/Ag_(2)Se composite film shows a large power factor of~2275 μW m^(-1) K^(-2) at 300 K.Such an outstand-ing TE performance of the composite film is due to the unique microstructure and the synergistic effect between the Ag and Ag_(2)Se.Meanwhile,the composite film also shows outstanding flexibility(~91.8%of the initial electrical conductivity is maintained,and the S is unchanged after 1500 bending cycles with a bending radius of 4 mm).Furthermore,a 4-leg flexible TE generator assembled with the optimal film produces a voltage of 14.06 mV and 4.96 μW at a temperature difference of 30.4 K.This work provides a new inspiration for the preparation of flexible Ag_(2)Se-based films with excellent TE performance near room temperature.展开更多
Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) an...Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.展开更多
Metal-organic framework (MOF)-based heterostructured materials have been widely investigated in the field of electrocatalysis.However,the existing prepared methods of MOF-based heterostructured materials still suffer ...Metal-organic framework (MOF)-based heterostructured materials have been widely investigated in the field of electrocatalysis.However,the existing prepared methods of MOF-based heterostructured materials still suffer from some drawbacks,such as harsh conditions and complicated multistep synthetic procedures.Herein,a one-pot modulated method is developed for preparing MOF-bimetallic oxide heterostructured catalyst for oxygen evolution reaction (OER).展开更多
The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science,offering a material solution that is not only superior in fire safety but is also environm...The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science,offering a material solution that is not only superior in fire safety but is also environment friendly.Herein,a flame-retardant epoxy vitrimer(EV)was prepared using partially bio-based IADPPO(diphenylphosphine oxide itaconic anhydride)and citric acid as curing reagents via a solvent-free process.Their incorporation created covalent adaptable networks(CANs)in the matrix which promote reprocessability and recyclability.The EV exhibits excellent thermal stability with high initial decomposition temperature(T_(- 5wt%)∼308℃)and high glass transition temperature(T_(g)∼107℃),similar to the blank EV(115℃).The flame retardancy,mechanical properties,transesterification-based reprocessability,and flame-retardant mechanism were investigated.The EV containing 3 wt%phosphorus(EV IADPPO 3P)achieved UL-94 V0 classification with a limiting oxygen index(LOI)of 27%,while the virgin sample Blank EV(without phosphorus)burned completely.Additionally,increased flexural strength of 79%was observed for EV IADPPO 3P compared to Blank EV.Furthermore,the flame-retardant EV showed high malleability and reparability that could be thermomechanically reprocessed without sacrificing the thermal,mechanical,and flame-retardant properties.Thus,the newly developed epoxy vitrimer is not only fire-safe but fulfills the sustainability goals of today’s society.展开更多
High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-poly...High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs.展开更多
Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA...Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.展开更多
The low field nuclear magnetic resonance (NMR), as a nondestructive and noninvasive technique, was employed to investigate the water distribution and content in cement paste with different water-to-cement ratio (w/c r...The low field nuclear magnetic resonance (NMR), as a nondestructive and noninvasive technique, was employed to investigate the water distribution and content in cement paste with different water-to-cement ratio (w/c ratio) during early and later hydration stages. From the water distribution spectrum deduced from relaxation time distribution in paste, it is suggested that the water fills in the capillary pores at initial period, and then diffuses to the mesopores and gel pores in hydration products with the hydration proceeding. The decrease of peak area in water distribution spectrum reflects the transformation from physically bound water to chemically bound water. In addition, based on the connection between relaxation time and pore size, the relative content changes of water in various states and constrained in different types of pores were also measured. The results demonstrate that it is influenced by the formation of pore system and the original water-to-cement ratio in the paste. Consequently, the relative content of capillary water is dropped to less than 2% in the paste with low w/c ratio of 0.3 when being hydrated for 1 d, while the contents are still 16% and 36% in the pastes with w/c ratios of 0.4 and 0.5, respectively.展开更多
Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experi...Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG.展开更多
Proper parameters for image taking and minimum field number for image processing were investigated to evaluate volume fraction of unhydrated cement(UHC) in both neat cement paste and slag blended cement paste. Our r...Proper parameters for image taking and minimum field number for image processing were investigated to evaluate volume fraction of unhydrated cement(UHC) in both neat cement paste and slag blended cement paste. Our research suggested that magnification 250x was sufficient for the two pastes, and accelerating voltage should be set as 15 kV and 20 kV for BSE image taking of neat cement paste and slag blended cement paste respectively; the minimum field number increased while the total imaging area stayed the same as the magnification increased within certain statistical bias.展开更多
In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifte...In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.展开更多
The effects of Cr^3+, Cu^2+, and Pb^2+ on compressive strength, reaction products, and pore structures of fly ash based geopolymer were studied. In addition, the immobilization and bonding interaction between heavy me...The effects of Cr^3+, Cu^2+, and Pb^2+ on compressive strength, reaction products, and pore structures of fly ash based geopolymer were studied. In addition, the immobilization and bonding interaction between heavy metal and fly ash based geopolymers were investigated by X-ray photoelectron spectroscopic(XPS) and environmental scanning electron microscope(ESEM) techniques. The experimental results showed that the incorporation of Cr^3+, Cu^2+, and Pb^2+ had a great effect on the later compressive strength and resulted in producing reinhardbraunsite in the solidified body. Moreover, the Pb^2+ reduced the total pore volume of the solidified body, while Cr^3+ and Cu^2+ increased it. The XPS results indicated that O(1s), Si(2p), and Al(2p)bind energy increased due to Cr^3+ and Cu^2+ addition, but it did not change significantly due to Pb^2+ addition.The microstructure of calcium silicate hydrate(C-S-H) gel and sodium silicoaluminate hydrate(N-A-S-H) gel changed in different degree according to the ESEM results. The immobilization of Cr^3+, Cu^2+, and Pb^2+ using fly ash based geopolymer is attributed not only to the physical encapsulation, but also to the chemical bonding interaction.展开更多
The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200...The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.展开更多
The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment resid...The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(22120230104).
文摘By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.
基金finacially supported by the National Key Research and Development Program of China(No.2022YFE0135100)the National Natural Science Found-ation of China(Nos.52378255,52278270,and 52008151).
文摘Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated through a leaching experiment and kinetic modeling,and the effects of reaction time,HCl concentration,solid-to-liquid ratio,and reaction temperature on the leaching rate of mag-nesium were comprehensively studied.Results show that the suitable leaching conditions for magnesium in CNTs are 2 M HCl,a solid-to-liquid ratio of 50 g·L^(−1),and 90℃,at which the maximum leaching rate of magnesium is as high as 83.88%.A modified shrinking core model can well describe the leaching kinetics of magnesium.The dissolution of magnesium was dominated by a combination of chemical reaction and product layer diffusion,with a calculated apparent activation energy of 77.51 kJ·mol^(−1).This study demonstrates the feasibil-ity of using CNTs as a media for CO_(2)mineral sequestration.
基金Funded by the International Science and Technology Cooperation Project of the Key R&D Program of Science and Technology Innovation Yongjiang 2035。
文摘An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars incorporating crystalline admixtures(CAs)under various conditions,including water immersion,limewater soaking,and wet-dry cycles,with varying CA dosages and crack widths.The experimental results indicate that cement possesses inherently self-healing capability.Limewater environments inhibits healing compared with water immersion;however,wet-dry cycles enhance the effectiveness of higher CA dosages.Increasing the CA content can not improve healing performance,and wide cracks(0.3 mm)substantially reduce the intrinsic self-healing potential of cement.
文摘To convert carbon dioxide into high-value-added liquid products such as formate with renewable electricity(CO_(2)RR)is a promising strategy of CO_(2) resource utilization.The key is to find a highly efficient and selective electrocatalyst for CO_(2)RR.Herein,clustered Bi_(28)O_(32)(SO_(4))_(10) was found to show a high formate Faradaic efficiency(FE_(formate))of 96.2%at–1.1 V_(RHE) and FE_(formate) above 90%in a wide potential range from–0.9 to–1.3 V_(RHE) in H-type cell,surpassing the corresponding layered Bi_(2)O_(2)SO_(4)(85.6%FE_(formate) at–1.1 V_(RHE)).The advantageous CO_(2)RR performance of Bi_(28)O_(32)(SO_(4))_(10) over Bi_(2)O_(2)SO_(4) was ascribed to a special two-step in-situ reconstruction process,consisting of Bi_(28)O_(32)(SO_(4))_(10)→Bi_(-2.1)/Bi_(2)O_(2)CO_(3)→Bi_(-2.1)/Bi_(-0.6) during CO_(2)RR.It gave metallic Bi_(-2.1) with lattice distortion of–2.1%at the first step and metallic Bi_(-0.6) with lattice distortion of–0.6%at the second step.In contrast,the usual layered Bi_(2)O_(2)SO_(4) only formed metallic Bi_(-0.6) with weaker lattice strain.The metallic Bi_(-2.1) revealed higher efficiency in stabilizing*CO_(2) intermediate and reducing the energy barrier of CO_(2)RR,while suppressing hydrogen evolution reaction and CO formation.This work delivers a high-performance cluster-type Bi_(28)O_(32)(SO_(4))_(10) electrocatalyst for CO_(2)RR,and elucidates the origin of superior performance of clustered Bi_(28)O_(32)(SO_(4))_(10) electrocatalysts compared with layered Bi_(2)O_(2)SO_(4).
基金Funded by the National Natural Science Foundation of China(Nos.51578412,51878479,52078372,and 52478272)the International Science and Technology Cooperation Project of the Key R&D Program of Science and Technology Innovation Yongjiang 2035(No.2024H023)。
文摘Four typical admixtures,polycarboxylate superplasticiser(PCE),tartaric acid(TA),sorbitol and polyacrylamide(PAM),were selected to systematically investigate their regulatory mechanisms on the formation of ettringite through Fourier transform infrared spectroscopy,X-ray diffraction,particle size analysis and nucleation kinetic model.The experimental results indicate that the admixtures alter the formation of ettringite through physical adsorption,complexation and solution viscosity modulation without changing its chemical structure.Low concentrations of PCE inhibit size growth by forming an adsorption layer on the surface of ettringite,whereas high concentrations of PCE alter the size change of ettringite by modulating the distribution of ionic concentrations.TA significantly reduces the size of ettringite by complexing Ca^(2+).Sorbitol and PAM promote the local growth of ettringite at low concentrations,leading to larger sizes.But at high concentrations,the size growth of ettringite is inhibited due to the increase in viscosity or the enhancement of complexation.Matlab nucleation kinetic modelling further shows that the addition of admixtures enhances the initial nucleation during ettringite synthesis,with values ranging from 14.45%to 114.25%.However,the subsequent nucleation rate of ettringite is significantly affected,decreasing by 12.79%to 71.74%.The results provide a theoretical basis for the design of ettringite materials and the optimisation of the application of admixtures.
基金financially supported by the Natural Science Foundation of China(Grant Nos.42377166 and 42007246)Key R&D Program Social Development Project of Jiangsu Province(Grant No.BE2023800)the National Key R&D Program of China(Grant No.2023YFC3709600).
文摘Biostimulation has been proven to be an available approach for microbially induced calcium carbonate precipitation(MICP).However,biostimulation may not be as effective as bioaugmentation in some unfavorable situations.In this study,the feasibility of biochar-assisted MICP for improving the shear strength of calcareous sand is investigated.The optimization of cementation solution for biostimulated MICP is first determined through a series of unconfined compressive tests.The shear characteristics of biocemented calcareous sand,enhanced by biochar and treated through biostimulation,are then assessed using consolidated undrained(CU)shear triaxial tests.To characterize the shear strength of biocemented sand under low effective normal stress,both Mohr-Coulomb failure envelopes and nonlinear failure envelopes were employed.Meanwhile,the current study also compared and analyzed two distinct stress states:maximum principal stress ratio(σ'_(1)/σ'_(3)max)and Skempton’s pore pressure parameter A=0,to identify an appropriate failure criterion for determination of the shear strength parameters.Furthermore,the microscopic features and post-failure characteristics of biochar-assisted calcareous sand were examined and discussed.The findings indicate that biochar can contribute to an increase in cementation content by serving as additional nucleation sites.The study may provide valuable insights into the potential of biochar-assisted MICP for enhancing the biostimulation approach.
基金This work is supported by the National Natural Science Foundation of China(Nos.51602229 and U2040222)the Opening Project of Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education(Tongji University)the Water Conservancy Science and Technology Project of Hunan Province(No.XSKJ2021000-15),China.
文摘The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,is responsible for the viscoelastic mechanism of cement-based materials.In this study,a molecular model of C-S-H was developed to explain the stress relaxation characteristics of C-S-H at different initial deformation states,Ca/Si ratios,temperatures,and water contents,which cannot be accessed experimentally.The stress relaxation of C-S-H occurs regardless of whether it is subjected to initial shear,tensile,or compressive deformation,and shows a heterogeneous characteristic.Water plays a crucial role in the stress relaxation process.A large Ca/Si ratio and high temperature reduce the cohesion between the calcium-silicate layer and the interlayer region,and the viscosity of the interlayer region,thereby accelerating the stress relaxation of C-S-H.The effect of the hydrogen bond network and the morphology of C-S-H on the evolution of the stress relaxation characteristics of C-S-H at different water contents was elucidated by nonaffine mean squared displacement.Our results shed light on the stress relaxation characteristics of C-S-H from a microscopic perspective,bridging the gap between the microscopic phenomena and the underlying atomic-level mechanisms.
基金National Natural Science Foundation of China (Nos. 92163118 and 51972234).
文摘In this work,Ag/Ag_(2)Se composite films with excellent thermoelectric(TE)properties and flexibility are prepared based on a simple one-pot method.By adjusting the nominal ratios of Ag/Se,an optimal Ag/Ag_(2)Se composite film shows a large power factor of~2275 μW m^(-1) K^(-2) at 300 K.Such an outstand-ing TE performance of the composite film is due to the unique microstructure and the synergistic effect between the Ag and Ag_(2)Se.Meanwhile,the composite film also shows outstanding flexibility(~91.8%of the initial electrical conductivity is maintained,and the S is unchanged after 1500 bending cycles with a bending radius of 4 mm).Furthermore,a 4-leg flexible TE generator assembled with the optimal film produces a voltage of 14.06 mV and 4.96 μW at a temperature difference of 30.4 K.This work provides a new inspiration for the preparation of flexible Ag_(2)Se-based films with excellent TE performance near room temperature.
基金supported by the Tianjin Science and Technology support key projects (20JCYBJC01420)。
文摘Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.22120230104)。
文摘Metal-organic framework (MOF)-based heterostructured materials have been widely investigated in the field of electrocatalysis.However,the existing prepared methods of MOF-based heterostructured materials still suffer from some drawbacks,such as harsh conditions and complicated multistep synthetic procedures.Herein,a one-pot modulated method is developed for preparing MOF-bimetallic oxide heterostructured catalyst for oxygen evolution reaction (OER).
基金partially supported by the Swiss National Sci-ence Foundation(Grant No.200021L_196923)by funds from the Zürcher Stiftung für Textilforschung(Winterthur,Switzerland)supported by the China Scholarship Council(CSC No.202006260103)。
文摘The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science,offering a material solution that is not only superior in fire safety but is also environment friendly.Herein,a flame-retardant epoxy vitrimer(EV)was prepared using partially bio-based IADPPO(diphenylphosphine oxide itaconic anhydride)and citric acid as curing reagents via a solvent-free process.Their incorporation created covalent adaptable networks(CANs)in the matrix which promote reprocessability and recyclability.The EV exhibits excellent thermal stability with high initial decomposition temperature(T_(- 5wt%)∼308℃)and high glass transition temperature(T_(g)∼107℃),similar to the blank EV(115℃).The flame retardancy,mechanical properties,transesterification-based reprocessability,and flame-retardant mechanism were investigated.The EV containing 3 wt%phosphorus(EV IADPPO 3P)achieved UL-94 V0 classification with a limiting oxygen index(LOI)of 27%,while the virgin sample Blank EV(without phosphorus)burned completely.Additionally,increased flexural strength of 79%was observed for EV IADPPO 3P compared to Blank EV.Furthermore,the flame-retardant EV showed high malleability and reparability that could be thermomechanically reprocessed without sacrificing the thermal,mechanical,and flame-retardant properties.Thus,the newly developed epoxy vitrimer is not only fire-safe but fulfills the sustainability goals of today’s society.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120230104).
文摘High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs.
基金Funded by the National Natural Science Foundation of China(No.52178241)the National Key Research and Development Program of China during the Fourteenth Five-Year Plan Period(No.2021YFB3802001)+1 种基金the Shanghai Science and Technology Innovation Action Plan(No.23D21201401)the Key Research and Development of the Shaanxi Province of China(No.2022GY-163)。
文摘Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.
基金Project(2009CB623105) supported by the National Basic Research Program of ChinaProject(51108341) supported by the National Natural Science Foundation of ChinaProjects(20110490703, 2012T50437) supported by China Postdoctoral Science Foundation
文摘The low field nuclear magnetic resonance (NMR), as a nondestructive and noninvasive technique, was employed to investigate the water distribution and content in cement paste with different water-to-cement ratio (w/c ratio) during early and later hydration stages. From the water distribution spectrum deduced from relaxation time distribution in paste, it is suggested that the water fills in the capillary pores at initial period, and then diffuses to the mesopores and gel pores in hydration products with the hydration proceeding. The decrease of peak area in water distribution spectrum reflects the transformation from physically bound water to chemically bound water. In addition, based on the connection between relaxation time and pore size, the relative content changes of water in various states and constrained in different types of pores were also measured. The results demonstrate that it is influenced by the formation of pore system and the original water-to-cement ratio in the paste. Consequently, the relative content of capillary water is dropped to less than 2% in the paste with low w/c ratio of 0.3 when being hydrated for 1 d, while the contents are still 16% and 36% in the pastes with w/c ratios of 0.4 and 0.5, respectively.
基金Funded by the Major State Basic Research Development Program of China('973'Project,2001CB610705)
文摘Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623104)
文摘Proper parameters for image taking and minimum field number for image processing were investigated to evaluate volume fraction of unhydrated cement(UHC) in both neat cement paste and slag blended cement paste. Our research suggested that magnification 250x was sufficient for the two pastes, and accelerating voltage should be set as 15 kV and 20 kV for BSE image taking of neat cement paste and slag blended cement paste respectively; the minimum field number increased while the total imaging area stayed the same as the magnification increased within certain statistical bias.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623100)the National Natural Science Foundation of China(No.51378391)
文摘In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.
基金Funded by the National Natural Science Foundation of China(No.51478328)the Natural Science Foundation of Shanghai(No.17ZR1442000)the Fundamental Research Funds for the Central Universities of China(No.22120180087)
文摘The effects of Cr^3+, Cu^2+, and Pb^2+ on compressive strength, reaction products, and pore structures of fly ash based geopolymer were studied. In addition, the immobilization and bonding interaction between heavy metal and fly ash based geopolymers were investigated by X-ray photoelectron spectroscopic(XPS) and environmental scanning electron microscope(ESEM) techniques. The experimental results showed that the incorporation of Cr^3+, Cu^2+, and Pb^2+ had a great effect on the later compressive strength and resulted in producing reinhardbraunsite in the solidified body. Moreover, the Pb^2+ reduced the total pore volume of the solidified body, while Cr^3+ and Cu^2+ increased it. The XPS results indicated that O(1s), Si(2p), and Al(2p)bind energy increased due to Cr^3+ and Cu^2+ addition, but it did not change significantly due to Pb^2+ addition.The microstructure of calcium silicate hydrate(C-S-H) gel and sodium silicoaluminate hydrate(N-A-S-H) gel changed in different degree according to the ESEM results. The immobilization of Cr^3+, Cu^2+, and Pb^2+ using fly ash based geopolymer is attributed not only to the physical encapsulation, but also to the chemical bonding interaction.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Doctoral Program of Higher Education of China(No.20110072120046)+1 种基金the Fundamental Research Funds for the Central Universities(No.0500219170)the Opening Measuring Fund of LargeApparatus of Tongji University(No.0002012011)
文摘The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110072120046)
文摘The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.