期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Temperature fields prediction for the casting process by a conditional diffusion model
1
作者 Jin-wu Kang Jing-xi Zhu Qi-chao Zhao 《China Foundry》 2025年第2期139-150,共12页
Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate mode... Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate model to predict the heat transfer during the casting process instead of numerical simulation.The conditional diffusion model was established and trained with the geometry shapes,initial temperature fields and temperature fields at t_(i) as the condition and random noise sampled from standard normal distribution as the input.The output was the temperature field at t_(i+1).Therefore,the temperature field at t_(i+1)can be predicted as the temperature field at t_(i) is known,and the continuous temperature fields of all the time steps can be predicted based on the initial temperature field of an arbitrary 2D geometry.A training set with 3022D shapes and their simulated temperature fields at different time steps was established.The accuracy for the temperature field for a single time step reaches 97.7%,and that for continuous time steps reaches 69.1%with the main error actually existing in the sand mold.The effect of geometry shape and initial temperature field on the prediction accuracy was investigated,the former achieves better result than the latter because the former can identify casting,mold and chill by different colors in the input images.The diffusion model has proved the potential as a surrogate model for numerical simulation of the casting process. 展开更多
关键词 diffusion model U-Net CASTING simulation heat transfer
在线阅读 下载PDF
Prediction of intrusive gas pores caused by resin burning in sand core for iron castings
2
作者 Ji-wu Wang Xiao-long Wang +8 位作者 Yu-cheng Sun Yu-hang Huang Xiu-ming Chen Xiong-zhi Wu Na Li Jin-wu Kang Tao Jing Tian-you Huang Hai-liang Yu 《China Foundry》 2025年第1期23-32,共10页
In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occur... In the production of castings,intrusive gas pore represents a kind of common defects which can lead to leakage in high gas-tightness requirement castings,such as cylinder blocks and cylinder heads for engines.It occurs due to the intrusion of gases generated during the resin burning of the sand core into castings during the casting process.Therefore,a gas generation and flow constitution model was established,in which the gas generation rate is a function of temperature and time,and the flow of gas is controlled by the gas release,conservation,and Darcy's law.The heat transfer and gas flow during casting process was numerically simulated.The dangerous point of cores is firstly identified by a virtual heat transfer method based on the similarity between heat transfer and gas flow in the sand core.The gas pores in castings are predicted by the gas pressure,the viscosity and state of the melt for these dangerous points.Three distinct sand core structures were designed and used for the production of iron castings,and the simulated gas pore results were validated by the obtained castings. 展开更多
关键词 gas pore numerical simulation iron casting sand core RESIN
在线阅读 下载PDF
Marked improvement of photoelectric response performance based on CNTF/AgNSF/PZT pyroelectric photodetector: A comprehensive study
3
作者 Bocheng Lv Xiyu Hong +2 位作者 Jinquan Wei Mohsin Rafique Zhe Li 《Chinese Physics B》 2025年第6期597-602,共6页
Pyroelectric materials, known for their ability to convert thermal energy into electrical signals, have garnered significant attention due to their wide-ranging applications. In this work, we report the fabrication of... Pyroelectric materials, known for their ability to convert thermal energy into electrical signals, have garnered significant attention due to their wide-ranging applications. In this work, we report the fabrication of high-performance pyroelectric photodetectors utilizing a heterostructure of carbon nanotube film(CNTF) and silver nanostructure film(Ag NSF)on a lead zirconate titanate(PZT) substrate. The resulting device exhibits an impressive broad-spectrum photoelectric response, covering wavelengths from ultraviolet to near-infrared, with a responsivity range of 0.49 V·W^(-1)–1.01 V·W^(-1) and a fast response time of 8 ms–40 ms. The enhanced photoelectric properties of the CNTF/Ag NSF/PZT composite suggest its strong potential for applications in advanced broadband photodetectors, positioning this material system as a promising candidate for next-generation optoelectronic devices. 展开更多
关键词 photoelectric response pyroelectric material composite
原文传递
Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing 被引量:12
4
作者 刘世英 高飞鹏 +2 位作者 张琼元 朱雪 李文珍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第7期1222-1227,共6页
Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of th... Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent. 展开更多
关键词 carbon nanotube magnesium alloy composite ultrasonic processing
在线阅读 下载PDF
Review of production status of heavysteel castings and key technologies for their manufacture in China 被引量:7
5
作者 Kang Jinwu Huang Tianyou Liu Baicheng 《China Foundry》 SCIE CAS 2008年第1期1-6,共6页
This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulicturbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the... This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulicturbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapidgrowth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Someheavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three GorgesProject have been successfully made. However, the domestic production capability is still far from meeting the giganticrequirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still dependon import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steelcastings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc.In addition, several case studies on the application of numerical simulation in the production of heavy steel castingsare presented. 展开更多
关键词 heavy steel casting numerical simulation foundry technology
在线阅读 下载PDF
Microstructural evolution and its influence on mechanical and corrosion behaviors in a high-Al/Zn containing duplex Mg-Li alloy after friction stir processing 被引量:4
6
作者 Yixing Zhu Mengran Zhou +7 位作者 Yingxin Geng Shun Zhang Tongzheng Xin Gaoqiang Chen Yifan Zhou Xiaoyu Zhou Ruizhi Wu Qingyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期245-255,共11页
Ultralight Mg-Li alloys offer promising applications across various fields.Mg-Li alloys enriched with Al and Zn hold theoretical potential for achieving excellent mechanical strength and corrosion resistance.However,t... Ultralight Mg-Li alloys offer promising applications across various fields.Mg-Li alloys enriched with Al and Zn hold theoretical potential for achieving excellent mechanical strength and corrosion resistance.However,the structural and performance characteristics of such Mg-Li alloys,particularly after thermo-mechanical processing,remain inadequately explored and understood.This study investigated the mi-crostructural evolution of a Mg-9Li-5Al-4Zn alloy after friction stir processing and its consequent effects on the mechanical and corrosion performance.The grain size of the alloy was effectively refined and sta-bilized during friction stir processing at various heat inputs.The yield strength of the alloy increased by 86.4%after friction stir processing under the highest heat input condition,which was attributed to fine grain strengthening,solid solution strengthening and dispersion strengthening.Concurrently,the alloy ex-perienced a slight decrease in elongation after the friction stir processing.The alloy subjected to friction stir processing with the highest heat input exhibited a minimal corrosion current density of 6.10×10^(−6) A/cm^(2),which was only 25%of the base metal.The enhanced anti-corrosion properties can be attributed to the dispersion and distribution of precipitated particles induced by friction stir processing,which hin-dered the micro-galvanic corrosion and promoted the generation of a compact surface film,leading to minimal and uniform corrosion.This investigation can be significant for understanding the metallurgical mechanisms and performance evolution of Mg-Li alloys during thermomechanical processes. 展开更多
关键词 Mg-Li-Al-Zn alloy Friction stir processing Microstructure evolution Thermal-mechanical stability Corrosion behavior
原文传递
Image processing based three-dimensional model reconstruction for cross-platform numerical simulation
7
作者 Yu-cheng Sun Yu-hang Huang +5 位作者 Na Li Xiao Han Ai-long Jiang Jin-wu Kang Ji-wu Wang Hai-liang Yu 《China Foundry》 SCIE CAS CSCD 2023年第2期139-147,共9页
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ... Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study. 展开更多
关键词 cross-platform numerical simulation 3D model reconstruction image processing SLICE
在线阅读 下载PDF
Concurrently bioprinted scaffolds with autologous bone and allogeneic BMSCs promote bone regeneration through native BMSC recruitment 被引量:1
8
作者 Yu Huan Hongqing Chen +10 位作者 Dezhi Zhou Xin He Sanzhong Li Xiuquan Wu Bo Jia Yanan Dou Xiaowei Fei Shuang Wu Zhou Fei Tao Xu Fei Fei 《Bio-Design and Manufacturing》 2025年第1期85-99,I0042,I0043,共17页
Autologous bone marrow-derived mesenchymal stem cells(BMSCs)have been shown to promote osteogenesis;however,the effects of allogeneic BMSCs(allo-BMSCs)on bone regeneration remain unclear.Therefore,we explored the bone... Autologous bone marrow-derived mesenchymal stem cells(BMSCs)have been shown to promote osteogenesis;however,the effects of allogeneic BMSCs(allo-BMSCs)on bone regeneration remain unclear.Therefore,we explored the bone regeneration promotion effect of allo-BMSCs in 3D-printed autologous bone particle(ABP)scaffolds.First,we concurrently printed scaffolds with polycaprolactone,ABPs,and allo-BMSCs for appropriate support,providing bioactive factors and seed cells to promote osteogenesis.In vitro studies showed that ABP scaffolds promoted allo-BMSC osteogenic differentiation.In vivo studies revealed that the implantation of scaffolds loaded with ABPs and allo-BMSCs into canine skull defects for nine months promoted osteogenesis.Further experiments suggested that only a small portion of implanted allo-BMSCs survived and differentiated into vascular endothelial cells,chondrocytes,and osteocytes.The implanted allo-BMSCs released stromal cell-derived factor 1 through paracrine signaling to recruit native BMSCs into the defect,promoting bone regeneration.This study contributes to our understanding of allo-BMSCs,providing information relevant to their future application. 展开更多
关键词 Concurrent 3D bioprinting CRANIOPLASTY Autologous bone particles Allogeneic mesenchymal stem cells RECRUITMENT
在线阅读 下载PDF
Multicomponent phase field simulation of impact of solidification direction on solute redistribution in Ni-based single crystal superalloys
9
作者 Ye-yuan Hu Hu-xiang Xia Qing-yan Xu 《Journal of Iron and Steel Research International》 2025年第9期2926-2936,共11页
With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,lea... With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution. 展开更多
关键词 Ni-based single crystal superalloy Solute redistribution Solutal convection Downward directional solidification Multicomponent phase field simulation
原文传递
Numerical simulation of microstructure and microporosity morphology in directional solidification of aluminum-copper alloys:Effect of copper content and withdrawal rate
10
作者 Wei Yuan Hai-dong Zhao +3 位作者 Xu Shen Chun Zou Yuan Liu Qing-yan Xu 《China Foundry》 2025年第1期33-44,共12页
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma... Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics. 展开更多
关键词 MICROPOROSITY DENDRITES cellular automaton Al-Cu alloys directional solidification
在线阅读 下载PDF
Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition 被引量:21
11
作者 吴朝锋 马明星 +3 位作者 刘文今 钟敏霖 张红军 张伟明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期997-1002,共6页
Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal s... Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t... 展开更多
关键词 laser cladding particle reinforced rare earth oxide nucleation rare earth carbide
在线阅读 下载PDF
A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth 被引量:14
12
作者 Rui Chen Qingyan Xu Baicheng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第12期1311-1320,共10页
Since the characteristic of dendrite is an important factor determining the performance of castings, a twodimensional cellular automaton model with decentered square algorithm is developed for quantitatively predictin... Since the characteristic of dendrite is an important factor determining the performance of castings, a twodimensional cellular automaton model with decentered square algorithm is developed for quantitatively predicting the dendritic growth during solidification process. The growth kinetics of solid/liquid interface are determined by the local equilibrium composition and local actual liquid composition, and the calculation of the solid fraction increment is based on these two compositions to avoid the solution of growth velocity. In order to validate the developed model, quantitative simulations of steady-state dendritic features over a range of undercooling was performed and the results exhibited good agreement with the predictions of LGK(Liptone Glicksman-Kurz) model. Meanwhile, it is demonstrated that the proposed model can be applied to simulate multiple equiaxed dendritic growth, as well as columnar dendritic growth with or without equiaxed grain formation in directional solidification of AleC u alloys. It has been shown that the model is able to simulate the growth process of multi-dendrites with various preferential orientations and can reproduce a wide range of complex dendritic growth phenomena such as nucleation, coarsening of dendrite arms, side branching in dendritic morphologies, competitive growth as well as the interaction among surrounding dendrites. 展开更多
关键词 Cellular automaton Dendritic growth Crystallographic orientation Aluminum alloys
原文传递
Insulation effect of air cavity in sand mold using 3D printing technology 被引量:10
13
作者 Cheng-yang Deng Jin-wu Kang +4 位作者 Hao-long Shangguan Tao Huang Xiao-peng Zhang Yong-yi Hu Tian-you Huang 《China Foundry》 SCIE 2018年第1期37-43,共7页
The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux... The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stressframe was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser. 展开更多
关键词 3D printing sand mold air cavity insulation effect RISER
在线阅读 下载PDF
Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt 被引量:9
14
作者 Ang Zhang Zhi-peng Guo Shou-mei Xiong 《China Foundry》 SCIE 2017年第5期373-378,共6页
In the present study, the influence of natural convection on the lamellar eutectic growth is determined by a phase-field-lattice Boltzmann study for Al-Cu eutectic alloy. The mass difference resulting from concentrati... In the present study, the influence of natural convection on the lamellar eutectic growth is determined by a phase-field-lattice Boltzmann study for Al-Cu eutectic alloy. The mass difference resulting from concentration difference led to the fluid flow, and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency without any compromising accuracy. Results show that the existence of natural convection would affect the growth undercooling and thus control the interface shape by adjusting the lamellar width. In particular, by alternating the magnitude of the solute expansion coefficient, the strength of the natural convection is changed. Corresponding microstructure patterns are discussed and compared with those under no-convection conditions. 展开更多
关键词 natural convection lamellar width phase field model lattice Boltzmann method
在线阅读 下载PDF
Effect of different processing parameters on interfacial heat-transfer behavior in high-pressure die-casting process 被引量:7
15
作者 Hong-mei YANG Wen-bo YU +3 位作者 Yong-you CAO Xiao-bo LI Zhi-peng GUO Shou-mei XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2599-2606,共8页
Vacuum die casting can reduce the'air entrapment'phenomenon during casting process.Based on the temperature measurements at metal-die interface with different processing parameters,such as slow shot speed(VL),... Vacuum die casting can reduce the'air entrapment'phenomenon during casting process.Based on the temperature measurements at metal-die interface with different processing parameters,such as slow shot speed(VL),high shot speed(VH),pouring temperature(Tp)and initial die temperature(Tm),inverse method was developed to determine the interfacial heat transfer coefficient(IHTC).The results indicate that a closer contact between the casting and die could be achieved when the vacuum system is used.It is found that the vacuum could strongly increase the values of IHTC and decrease the grain size in castings.The IHTC could have a higher peak value with increasing the Tp from680to720℃or the VL from0.1to0.4m/s.In addition,the influence of the VH and Tm on IHTC could be negligible. 展开更多
关键词 vacuum die casting interfacial heat transfer behavior metal-die interface externally solidified crystals
在线阅读 下载PDF
Effects of Post-weld Heat Treatment on Microstructure, Mechanical Properties and the Role of Weld Reinforcement in 2219 Aluminum Alloy TIG-Welded Joints 被引量:4
16
作者 Deng-Kui Zhang Guo-Qing Wang +6 位作者 Ai-Ping Wu Ji-Guo Shan Yue Zhao Tian-Yi Zhao Dan-Yang Meng Jian-Ling Song Zhong-Ping Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第6期684-694,共11页
In as-welded state,each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases.After the... In as-welded state,each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases.After the post-weld heat treatment,both the amount and the size of the eutectic structure orθphases decreased.Correspondingly,both the Cu content inα-Al matrix and the microhardness increased to a similar level in each region of the joint,and the tensile strength of the entire joint was greatly improved.Post-weld heat treatment played the role of solid solution strengthening and aging strengthening.After the post-weld heat treatment,the weld performance became similar to other regions,but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect.The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties,and the specimens randomly crack in the weld zone. 展开更多
关键词 2219 Aluminum alloy TUNGSTEN inert gas ARC welding Post-weld heat treatment WELD REINFORCEMENT Digital image correlation technique
原文传递
Seam-tracking based on dynamic trajectory planning for a mobile welding robot 被引量:10
17
作者 Hong Yuxiang Du Dong +1 位作者 Pan Jiluan Li Xiangwen 《China Welding》 EI CAS 2019年第4期46-50,共5页
A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By us... A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved. 展开更多
关键词 welding automation seam tracking mobile robot dynamic trajectory planning
在线阅读 下载PDF
Numerical simulation on multiple pouring process for a 292 t steel ingot 被引量:5
18
作者 Tu Wutao Zhang Xiong +1 位作者 Shen Houfa Liu Baicheng 《China Foundry》 SCIE CAS 2014年第1期52-58,共7页
A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and th... A ladle-tundish-mould transportation model considering the entire multiple pouring(MP) process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and the mould for making a 292 t steel ingot. Firstly, the fluid flow as well as the heat and mass transfer of the molten steel in the tundish is simulated based on the multiphase transient turbulence model. Then, the carbon mixing in the mould is calculated by using the species concentration at the tundish outlet as the inlet condition during the teeming process. The results show a high concentration of carbon at the bottom and a low concentration of carbon at the top of the mould after a MP process with carbon content high in the first ladle and low in the last ladle. Such carbon concentration distribution would help reduce the negative segregation at the bottom and the positive segregation at the top of the solidified ingot. 展开更多
关键词 multiple pouring TRANSPORTATION numerical simulation large steel ingot
在线阅读 下载PDF
Controlled cooling of an aluminum alloy casting based on 3D printed rib reinforced shell mold 被引量:3
19
作者 Hao-long Shangguan Jin-wu Kang +3 位作者 Ji-hao Yi Cheng-yang Deng Yong-yi Hu Tao Huang 《China Foundry》 SCIE 2018年第3期210-215,共6页
3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their de... 3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their dense structure. In this study, a new type of hollow mold based on 3D printing is presented. The new type of mold is a rib reinforced thickness-varying shell mold. This mold design can realize the controlled cooling of castings, i.e., different cooling rates at different areas, and improve the temperature uniformity of a casting after its solidifi cation. Therefore, the performance of castings can be improved and their residual stress and deformation can be reduced. This kind of new mold was applied to a stress frame of A356 aluminum alloy. The 3D printed rib reinforced thickness-varying shell mold was compared with the traditional dense mold, and the castings obtained by these two kinds of molds were also compared. The experimental results showed that the rib reinforced shell mold increased the cooling rate of the casting by 30%, tensile strength by 17%, yield strength by 11%, elongation by 67%, and decreased its deformation by 43%, while sand consumption was greatly reduced by 90%. 展开更多
关键词 RIB REINFORCED thickness-varying shell MOLD 3D PRINTING CASTING SOLIDIFICATION cooling
在线阅读 下载PDF
Effect of the processing route on the microstructure and mechanical behavior of superlight Mg-9Li-1Zn alloy via friction stir processing 被引量:5
20
作者 Mengran Zhou Zhuoran Zeng +4 位作者 Chun Cheng Yoshiaki Morisada Qingyu Shi Jian-Yih Wang Hidetoshi Fujii 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3064-3081,共18页
In this study, the effect of the processing route using a friction stir processing(FSP) method on the microstructure and mechanical behavior of a Mg-9Li-1Zn alloy was systematically investigated. In the FSP method, th... In this study, the effect of the processing route using a friction stir processing(FSP) method on the microstructure and mechanical behavior of a Mg-9Li-1Zn alloy was systematically investigated. In the FSP method, the odd-numbered(1st and 3rd) process directions and even-numbered(2nd and 4th) passes were alternated to distribute the strain throughout the whole processed zone uniformly. Consequently, the processed zone had a much more uniform microstructure and hardness distribution than the processed zone obtained using the conventional FSP method. Using this method, the grain size of a Mg-9Li-1Zn sheet alloy was refined from ~31 μm to ~0.21 μm with uniformly distributedα and β phases. The processed alloy exhibited a high strength-ductility synergy with an ultimate tensile strength(UTS) of 220.1 MPa and total elongation of 70.0% at a strain rate of 10^(-3)s^(-1), overwhelmingly higher than those of the base metal, 155.6 MPa in UTS and 36.0%in elongation. The in-situ SEM-DIC analysis and TEM observation demonstrated that such an outstanding ductility with moderate strength is caused by grain boundary sliding, the dominant deformation mechanism of the ultra-fine-grained sample after FSP. The processing route with reverse processing direction was proven to be efficient in producing the ultrafine grain size microstructure and improving the mechanical properties of superlight Mg-9Li-1Zn alloy. 展开更多
关键词 Mg-Li-Zn alloy Friction stir processing MICROSTRUCTURE In-situ SEM-DIC Mechanical properties
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部