The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source S...The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source SdP sampling from a large global dataset,we image topographies of transition zone discontinuities such as the 410-km and 660-km discontinuities(410 and 660)beneath the Kamchatka and conduct cross-section comparisons with the seismicity.Compared with the IASP91 model,the 410 exhibits apparent uplifts of 45-65 km with an average of 55 km in a horizontal width of~130 km,corresponding to lowtemperature anomalies of 750-1083 K with an average of 916 K.In contrast,the 660 shows depressions of 15-37 km with an average of 25 km together with downward deflections in a width of~260 km,implying low-temperature anomalies of 161-397 K with an average of 268 K.Thus,we confirm a thickened MTZ with a thickness of 325-345 km around the cold descending Pacific slab.We suggest that topographic patterns of transition zone discontinuities imply a Pacific slab that has been significantly heated in the MTZ with broadened thermal effects on the 660.When considered along with other studies,we infer that the slab is possibly heated by hot mantle flows around the torn slab window extended to at least the MTZ range,thus inducing variations in thermal and rheological properties of the slab.Our seismic results can provide more insight into slab dynamics in the northwestern Pacific.展开更多
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne...The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Xizang,indicating rotation of eastern Xizang material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.展开更多
The thermal flux curve of phase-transition fluid(PF)was tested using differential scanning calorimetry,based on which a reaction kinetics model was established to reflect the relationship between phase transition conv...The thermal flux curve of phase-transition fluid(PF)was tested using differential scanning calorimetry,based on which a reaction kinetics model was established to reflect the relationship between phase transition conversion rate,temperature and time.A temperature field model for fractures and rock matrix considering phase transition heat was then constructed,and its reliability was verified using previously established temperature field models.Additionally,the new model was used to study the effects of different injection parameters and phase-transition fracturing performance parameters on the temperature variations in fractures and matrix.The study indicates that,at different positions and times,the cooling effect of the injected cold fluid and the exothermic effect during the phase transition alternately dominate the temperature within the fracture.At the initial stage of fracturing fluid injection,the temperature within the fracture is high,and the phase transition rate is rapid,resulting in a significant impact of exothermic phase transition on the reservoir rock temperature.In the later stage of injection,the fracture temperature decreases,the phase transition exothermic rate slows,and the cooling effect of the fracturing fluid on the reservoir rock intensifies.Phase transition heat significantly affects the temperature of the fracture.Compared to cases where phase transition heat is not considered,when it is taken into account,the temperature within the fracture increases to varying degrees at the end of fluid injection.As the phase transition heat increases from 20 J/g to 60 J/g,the maximum temperature rise in the fracture increases from 2.1℃ to 6.2℃.The phase transition heat and PF volume fraction are positively correlated with fracture temperature changes,while specific heat capacity is negatively correlated with temperature changes.With increasing injection time,the temperature and phase transition rate at the fracture opening gradually decrease,and the location of the maximum phase transition rate and temperature difference gradually shifts from the fracture opening to about 10 m from the opening.展开更多
Size distributions of 29 elements in aerosols collected at urban,rural and curbside sites in Beijing were studied.High levels of Mn,Ni,As,Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in B...Size distributions of 29 elements in aerosols collected at urban,rural and curbside sites in Beijing were studied.High levels of Mn,Ni,As,Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing.Principal component analysis (PCA) indicates 4 sources of combustion emission,crust related sources,traffic related sources and volatile species from coal combustion.The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs).Group 1 elements are crust related and mainly found within coarse mode including Al,Mg,Ca,Sc,Ti,Fe,Sr,Zr and Ba;Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S,As,Se,Ag,Cd,Tl and Pb;Group 3 elements are multi-source related and show multi-mode distribution including Be,Na,K,Cr,Mn,Co,Ni,Cu,Zn,Ga,Mo,Sn and Sb.The EFs of Be,S,Cr,Co,Ni,Cu,Ga,Se,Mo,Ag,Cd,Sb,Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter.The abundance of Cu and Sb in coarse mode is about 2–6 times higher at curbside site than at urban site indicating their traffic sources.Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline,as the EFs of Pb are comparable at both urban and curbside sites,and about two times higher in winter than that in summer.展开更多
The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan an...The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient.展开更多
Using a new vortex detection and tracing method, a dataset of the Southwest Vortex(SWV) is established based on Japanese 25-year Reanalysis(JRA-25) reanalysis data during 1979–2008. The spatiotemporal features of the...Using a new vortex detection and tracing method, a dataset of the Southwest Vortex(SWV) is established based on Japanese 25-year Reanalysis(JRA-25) reanalysis data during 1979–2008. The spatiotemporal features of the SWV are derived from the dataset. In comparison to other seasons, summer yields the least SWVs, but with the highest probability that they will migrate from their region of origin. SWVs mostly emerge in the southwest of the Sichuan Basin and the southeast of the Tibetan Plateau. Migratory SWVs mainly move along either an eastward or southeastward path. Detailed composite analysis of warm-season SWVs shows that the subtropical high is a key factor in determining the direction of migratory SWVs. Furthermore, the steering wind at 700 hPa dominates the moving direction of migratory SWVs. Potential stability diagnosed by pseudo-equivalent potential temperature ? se is of certain significance for the evolution and movement of SWVs. On the other hand, migratory SWVs possess relatively greater strength than stationary SWVs, due to a stronger low-level jet with enhanced baroclinicity and moisture transport providing more energy to support the growth of SWVs along their paths of movement.展开更多
The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ...The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ~60°) whereas the angle between conjugate ductile shear zones is obtuse (usually 110°). The Mohr-Coulomb failure criterion, an experimentally validated empirical relationship, is commonly applied for interpreting the stress directions based on the orientation of the brittle shear fractures. However, the Mohr-Coulomb failure criterion fails to explain the formation of the low-angle normal fault, high-angle reverse fault, and the conjugate strike-slip fault with an obtuse angle in the ~1 direction. Although it is ten years since the Maximum-Effective-Moment (MEM) criterion was first proposed, and increasingly solid evidence in support of it has been obtained from both observed examples in nature and laboratory experiments, it is not yet a commonly accepted model to use to interpret these anti- Mohr-Coulomb features that are widely observed in the natural world. The deformational behavior of rock depends on its intrinsic mechanical properties and external factors such as applied stresses, strain rates, and temperature conditions related to crustal depths. The occurrence of conjugate shear features with obtuse angles of -110~ in the contractional direction on different scales and at different crustal levels are consistent with the prediction of the MEM criterion, therefore -110° is a reliable indicator for deformation localization that occurred at medium-low strain rates at any crustal levels. Since the strain-rate is variable through time in nature, brittle, ductile, and plastic features may appear within the same rock.展开更多
The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 3...The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals.展开更多
The fracturing technology for shale gas reservoir is the key to the development of shale gas industrialization.It makes much sense to study the mechanical properties and deformation characteristics of shale,due to its...The fracturing technology for shale gas reservoir is the key to the development of shale gas industrialization.It makes much sense to study the mechanical properties and deformation characteristics of shale,due to its close relationship with the fracability of shale gas reservoir.This paper took marine shale in the Changning area,southern Sichuan Basin of China as the research object.Based on field profile and hand specimen observation,we analyzed the development of natural fractures and collected samples from Wufeng Formation and Longmaxi Formation.Combining with the indoor experiment,we investigated the macroscopic and microscopic structural features and the remarkable heterogeneity of shale samples.Then we illustrated the mechanics and deformation characteristics of shale,through uniaxial compression test and direct shear test.The shale has two types of fracture modes,which depend on the angular relation between loading direction and the bedding plane.Besides,the Wufeng shale has a higher value of brittleness index than the Longmaxi shale,which was calculated using two methods,mechanical parameters and mineral composition.Given the above results,we proposed a fracability evaluation model for shale gas reservoir using the analytic hierarchy process.Four influence factors,brittleness index,fracture toughness,natural fractures and cohesive force,are considered.Finally,under the control of normalized value and weight coefficient of each influence factor,the calculations results indicate that the fracability index of the Wufeng Formation is higher than that of the Longmaxi Formation in Changning area,southern Sichuan Basin.展开更多
Data obtained by GRACE(Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or ...Data obtained by GRACE(Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or a point-like seismic source.Herein, we further extend the inversion of GRACE long-wavelength gravity changes to heterogeneous slip distributions during the 2011 Tohoku earthquake using three fault models:(Ⅰ) a constant-strike and constant-dip fault,(Ⅱ) a variable dip fault, and(Ⅲ) a realistically varying strike fault. By removing the post-seismic signal from the time series, and taking the effect of ocean water redistribution into account, we invert for slip models I, II, and III using co-seismic gravity changes measured by GRACE, de-striped by DDK3 decorrelation filter. The total seismic moments of our slip models, with respective values of 4.9×10^(22) Nm, 5.1×10^(22) Nm, and 5.0×10^(22) Nm, are smaller than those obtained by other studies relying on GRACE data. The resulting centroids are also located at greater depths(20 km, 19.8 km,and 17.4 km, respectively). By combining onshore GPS, GPS-Acoustic, and GRACE data, we obtain a jointly inverted slip model with a seismic moment of 4.8×10^(22) Nm, which is larger than the seismic moment obtained using only the GPS displacements. We show that the slip inverted from low degree space-borne gravimetric data, which contains information at the ocean region, is affected by the strike of the arcuate trench. The space-borne gravimetric data help us constrain the source parameters of a megathrust earthquake within the frame of heterogeneous slip models.展开更多
Modern geodetic techniques have developed rapidly in recent years, providing reliable observation data and new effective approaches, and greatly enhancing studies of the Tibetan geodynamics. For instance, the well-kno...Modern geodetic techniques have developed rapidly in recent years, providing reliable observation data and new effective approaches, and greatly enhancing studies of the Tibetan geodynamics. For instance, the well-known GPS technique has been employed to measure seismic slips for many faults in the Tibetan Plateau. GPS data agree well with the hypothesis of a thickening crust and eastward mass flow. Moreover, absolute gravimetric data have been applied to interpret geophysical phenomena such as crust movement, co-seismic gravity change, GIA, and ground water change. The satellite gravity mission GRACE launched in 2002 provided global gravity models with unprecedentedly high precision and high spatial resolution. It has been used in implementing temporal gravity changes and improving our knowledge of the Earth's interior, including lithosphere dynamics, mantle viscosity and rheology, plateau uplift, and subduction processing. It is noteworthy that gravity presents unique advantages for the study of Tibetan geodynamics because of its sensitivity to mass migration and dynamic redistribution. To date, great advances have been made in applying modern geodetic data in studying dynamic changes of Tibetan plateau. For instance, the horizontal displacement field from GPS data revealed dynamical characteristics of the present-day Tibetan plateau. The combination of gravity anomalies and topographic data describe the tectonic characteristics of Tibetan plateau. The combination of gravity data and GPS data show present properties of the Tibetan plateau such as crust thickening, Moho's subsidence, and plateau uplift. GRACE data were used to estimate the distribution of ice/snow melting. These results demonstrate that mere application of integrated geodetic data as well as geophysical methods and numerical simulations can enhance our knowledge of Tibetan plateau dynamics. It must be pointed out that GRACE data include various geophysical signals such as crust vertical movement, denudation, ice and snow melting, GIA, ground water change, and permafrost degradation. To separate the tectonic information from other impulses, each physical signal must be evaluated and corrected carefully from the GRACE data. The Tibetan geodynamic problem is a complicated and synthetic issue that must be addressed through collaboration of workers in many fields. Succinctly put, although great achievements have been made in studying Tibetan plateau dynamics from each field, the dynamical process remains unclear. Some fundamental problems remain unresolved. They should be solved with modern geodetic data, such as GRACE, GPS, and absolute gravity data, combined with meteorological and geological data, for quantitative analysis of Tibetan plateau dynamics affected by respective geophysical sources. This review article introduces and discusses the scientific importance, advances, problems, and prospects of modern geodesy applied to the study of geodynamic changes of the Tibetan plateau.展开更多
Xitian tin-polymetallic deposit, located in the eastern Hunan Province, SE China, hosts quartz vein and skarn in the contact zone between carbonate and two stages granites. Critical geodynamic questions for South Chin...Xitian tin-polymetallic deposit, located in the eastern Hunan Province, SE China, hosts quartz vein and skarn in the contact zone between carbonate and two stages granites. Critical geodynamic questions for South China are whether different types of mineralization form in the same time and how the magmatism–tectonic system controls the ore-forming process. Based on the distribution of the orebodies, six cassiterite samples from different types of mineralization are collected for dating. In-situ LA-MCICP-MS U–Pb isotopic data yielded concordia low intercept ages between 154 and 157 Ma, indicating that different types of mineralization belong to the same magmatism–mineralization system. Coupled with the study of the kinematic indicators, it suggests that the structural control of the wall rocks constrain the types of mineralization. These results provide further evidence of a close temporal link between the structure and the tin-polymetallic mineralization in Xitian deposit. Considering the structure in the district, granite dome plays an important role in the ore-forming process. The age and structural signatures in Xitian deposit are the response to the subduction of Pacific Plate.展开更多
In this study, a risk-based management model is developed and applied to an industrial zone. The models proposed by the United States Environmental Protection Agency and Han Bing have been improved by adding a residua...In this study, a risk-based management model is developed and applied to an industrial zone. The models proposed by the United States Environmental Protection Agency and Han Bing have been improved by adding a residual ratio of volatile organic compounds (VOC) after boiling and deleting the related parameters in half-life. Using this improved model, an integrated process was used to assess human health risk level in the study area. Compared with water quality analysis, the results highlight the importance of applying an integrated approach for decision making on risk levels and water protection. The results of this study demonstrated that: (1) Compared with these permissible level standards in China (GB 3838-2002) and National Primary Drinking Water Regulations of the United States, the residents' daily life had not been affected by the groundwater in this area (except for relative bad water quality of HB3-4 and HB3-6); (2) The typical detected organic contaminants of all groundwater samples were chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethene, and the pollution sources were mainly industrial sources by preliminary investigations; (3) As for groundwater, the non-carcinogenic risk values of all samples do not exceed the permissible level of 1.0 and the carcinogenic risk values are relatively lower than the permissible level of 1.00E-06 to 1.00E-04; (4) Drinking water pathway of trichloroethylene and tetrachloroethylene mainly contribute to increasing the health risk of residents' in study areas; (5) In terms of non-carcinogenic risk and carcinogenic risk, the health risk order for drinking water pathway and dermal contact pathway was: drinking water pathway 〉 dermal contact pathway.展开更多
This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flood...This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery.展开更多
Global mean sea level(GMSL) change is one of the important indicators of global climate change and is a crucial scientific issue of continuing interest. As satellite altimeter data, the Gravity Recovery and Climate Ex...Global mean sea level(GMSL) change is one of the important indicators of global climate change and is a crucial scientific issue of continuing interest. As satellite altimeter data, the Gravity Recovery and Climate Experiment(GRACE) and Argo continue to be updated, especially with the release of GRACE Follow-On(GRACE-FO) data, making it necessary to combine these latest data to estimate sea level change. Determinations on whether the GRACE and GRACE-FO observation systems provide unbiased global observation data have not been effectively evaluated. Therefore, this research mainly investigated the consistency of GRACE and GRACE-FO observation data in studying GMSL change. By comparing the sum of the GMSL calculated by the two gravity satellites and Argo data with the GMSL calculated by satellite altimeters, the discrepancy between GRACE-FO + Argo and satellite altimeter data is about 7.9 ± 2.3 mm, which is likely derived from the inconsistency between GRACE and GRACE-FO data.展开更多
In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous...In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous),we find that the difference in Love numbers of strike-slip and horizontal tensile sources are bigger than dip-slip and vertical tensile sources.Taken collectively,discontinuities have major effects on Green’s functions of four independent sources.For the near-field coseismic deformations of the 2013 Okhotsk earthquake(Mw 8.3),the overall differences between theoretical calculations in vertical displacement,geoid,and gravity changes caused by discontinuities are 10.52 percent,9.07 percent and 6.19 percent,with RMS errors of 0.624 mm,0.029 mm,and 0.063μGal,respectively.The difference in far-field displacements is small,compared with GPS data,and we can neglect this effect.For the shallow earthquake,2011 Tohoku-Oki earthquake(Mw 9.0),the differences in near-field displacements are 0.030 m(N-S),0.093 m(E-W),and 0.025 m(up-down)in our study area with the ARIA slip model,which gives results closer to GPS data than those from the USGS model.The difference in vertical displacements and gravity changes on the Earth’s surface caused by discontinuities are larger than 10 percent.The difference in the theoretical gravity changes at spatially fixed points truncated to degrees 60,as required by GRACE data,is 0.0016μGal and the discrepancy is 11 percent,with the theoretical spatial gravity changes from 1066B closer to observations than from 1066A.The results show that an Earth model with discontinuities in the medium has a large effect on the calculated coseismic deformations.展开更多
Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread con- cerns, especially when these events occur in the source regio...Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread con- cerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M- 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occur- rences are critical to improve hazard assessments.展开更多
Under the limited cultivated land area and the pursuit of sustainable agricultural development,it is essential for the safety of grain production to study agricultural management approaches on narrowing the winter whe...Under the limited cultivated land area and the pursuit of sustainable agricultural development,it is essential for the safety of grain production to study agricultural management approaches on narrowing the winter wheat yield gap and improving nitrogen use efficiency (NUE) in China.In this study,DSSAT-CERES-Wheat Model is used to simulate winter wheat yield under different agricultural treatments,and we analyze yield gaps and NUE with different management scenarios at regional scales and evaluate the suitable approaches for reducing yield gap and increasing NUE.The results show that,the potential of narrowing yield gap ranges 300–900 kg ha^(–1) with soil nutrients increase,400–1 200 kg ha^(–1) with sowing date adjustment and 0–400 kg ha^(–1) with planting density increase as well as 700–2 200 kg ha^(–1) with adding nitrogen fertilizer.Contribution rates of management measures of soil nutrients,sowing date adjusting,planting density,and nitrogen fertilizers are 5–15%,5–15%,0–4%,and 10–20%,respectively.Difference in nitrogen partial productivity ranges 3–10 kg kg^(–1) for soil nutrients,1–10 kg kg^(–1) for sowing date adjusting,1–5 kg kg^(–1) for planting density increase,and–12–0 kg kg^(–1) for adding nitrogen fertilizers,respectively.It indicates that four treatments can narrow yield gap and improve the NUE in varying degrees,but increasing nitrogen fertilizer leads to the decrease of NUE.展开更多
Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the...Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.展开更多
The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment...The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-rich shale, including mineral composition, organic matter richness and type, and li- thology stratigraphy, were analyzed, indicating very special characteristics. Meanwhile, the more complex and active tectonic movements in China lead to strong deformation and erosion of organic-rich shale, well-development of fractures and faults, and higher thermal maturity and serious heterogeneity. Co-existence of shale gas, tight sand gas, and coal bed methane (CBM) proposes a new topic: whether it is possible to co-produce these gases to reduce cost. Based on the geologic features, the primary pro- duction issues of shale gas in China were discussed with suggestions.展开更多
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.CEAIEF 20220201)the National Natural Science Foundation of China(Nos.42374113 and 42074101)the Central Publicinterest Scientific Institution Basal Research Fund(No.CEAIEF20230204).
文摘The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source SdP sampling from a large global dataset,we image topographies of transition zone discontinuities such as the 410-km and 660-km discontinuities(410 and 660)beneath the Kamchatka and conduct cross-section comparisons with the seismicity.Compared with the IASP91 model,the 410 exhibits apparent uplifts of 45-65 km with an average of 55 km in a horizontal width of~130 km,corresponding to lowtemperature anomalies of 750-1083 K with an average of 916 K.In contrast,the 660 shows depressions of 15-37 km with an average of 25 km together with downward deflections in a width of~260 km,implying low-temperature anomalies of 161-397 K with an average of 268 K.Thus,we confirm a thickened MTZ with a thickness of 325-345 km around the cold descending Pacific slab.We suggest that topographic patterns of transition zone discontinuities imply a Pacific slab that has been significantly heated in the MTZ with broadened thermal effects on the 660.When considered along with other studies,we infer that the slab is possibly heated by hot mantle flows around the torn slab window extended to at least the MTZ range,thus inducing variations in thermal and rheological properties of the slab.Our seismic results can provide more insight into slab dynamics in the northwestern Pacific.
基金supported by grants from the Ministry of Science and Technology(Grant Nos.2021FY100101,2019QZKK0901)the National Natural Science Foundation of China(Grant Nos.41941016,42230312,42020104007)China Geological Survey(Grant No.DD20221630).
文摘The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Xizang,indicating rotation of eastern Xizang material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.
基金Supported by the China Postdoctoral Science Foundation(2024M752803)the Open Fund of Key Laboratory of Deep Geothermal Resources of Ministry of Natural Resources(KLDGR2024B01)+1 种基金the National Natural Science Foundation of China(52179112)the Open Fund of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)(PLN2023-02)。
文摘The thermal flux curve of phase-transition fluid(PF)was tested using differential scanning calorimetry,based on which a reaction kinetics model was established to reflect the relationship between phase transition conversion rate,temperature and time.A temperature field model for fractures and rock matrix considering phase transition heat was then constructed,and its reliability was verified using previously established temperature field models.Additionally,the new model was used to study the effects of different injection parameters and phase-transition fracturing performance parameters on the temperature variations in fractures and matrix.The study indicates that,at different positions and times,the cooling effect of the injected cold fluid and the exothermic effect during the phase transition alternately dominate the temperature within the fracture.At the initial stage of fracturing fluid injection,the temperature within the fracture is high,and the phase transition rate is rapid,resulting in a significant impact of exothermic phase transition on the reservoir rock temperature.In the later stage of injection,the fracture temperature decreases,the phase transition exothermic rate slows,and the cooling effect of the fracturing fluid on the reservoir rock intensifies.Phase transition heat significantly affects the temperature of the fracture.Compared to cases where phase transition heat is not considered,when it is taken into account,the temperature within the fracture increases to varying degrees at the end of fluid injection.As the phase transition heat increases from 20 J/g to 60 J/g,the maximum temperature rise in the fracture increases from 2.1℃ to 6.2℃.The phase transition heat and PF volume fraction are positively correlated with fracture temperature changes,while specific heat capacity is negatively correlated with temperature changes.With increasing injection time,the temperature and phase transition rate at the fracture opening gradually decrease,and the location of the maximum phase transition rate and temperature difference gradually shifts from the fracture opening to about 10 m from the opening.
基金supported by the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 11K03ESPCT)the National Department Public Benefit Research Foundation (Ministry of Environmental Protection of the People’s Republic of China) (No. 201009001,201109002)
文摘Size distributions of 29 elements in aerosols collected at urban,rural and curbside sites in Beijing were studied.High levels of Mn,Ni,As,Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing.Principal component analysis (PCA) indicates 4 sources of combustion emission,crust related sources,traffic related sources and volatile species from coal combustion.The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs).Group 1 elements are crust related and mainly found within coarse mode including Al,Mg,Ca,Sc,Ti,Fe,Sr,Zr and Ba;Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S,As,Se,Ag,Cd,Tl and Pb;Group 3 elements are multi-source related and show multi-mode distribution including Be,Na,K,Cr,Mn,Co,Ni,Cu,Zn,Ga,Mo,Sn and Sb.The EFs of Be,S,Cr,Co,Ni,Cu,Ga,Se,Mo,Ag,Cd,Sb,Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter.The abundance of Cu and Sb in coarse mode is about 2–6 times higher at curbside site than at urban site indicating their traffic sources.Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline,as the EFs of Pb are comparable at both urban and curbside sites,and about two times higher in winter than that in summer.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.4147408641174084)+2 种基金the CAS/CAFEA international partnership program for creative research teams (KZZD-EW-TZ-19)funded by the Special Fund for Seismic Scientific Research (200808011,2004DIB3J1290)the State Key Laboratory of Earthquake Dynamics,Institute of Geology (LED2009A07)
文摘The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41275064 and 41175057)the Public Science and Technology Research Fund Projects of the Ocean (Grant No. 201005019)
文摘Using a new vortex detection and tracing method, a dataset of the Southwest Vortex(SWV) is established based on Japanese 25-year Reanalysis(JRA-25) reanalysis data during 1979–2008. The spatiotemporal features of the SWV are derived from the dataset. In comparison to other seasons, summer yields the least SWVs, but with the highest probability that they will migrate from their region of origin. SWVs mostly emerge in the southwest of the Sichuan Basin and the southeast of the Tibetan Plateau. Migratory SWVs mainly move along either an eastward or southeastward path. Detailed composite analysis of warm-season SWVs shows that the subtropical high is a key factor in determining the direction of migratory SWVs. Furthermore, the steering wind at 700 hPa dominates the moving direction of migratory SWVs. Potential stability diagnosed by pseudo-equivalent potential temperature ? se is of certain significance for the evolution and movement of SWVs. On the other hand, migratory SWVs possess relatively greater strength than stationary SWVs, due to a stronger low-level jet with enhanced baroclinicity and moisture transport providing more energy to support the growth of SWVs along their paths of movement.
基金supported by the National Science Foundation of China (41072071)
文摘The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ~60°) whereas the angle between conjugate ductile shear zones is obtuse (usually 110°). The Mohr-Coulomb failure criterion, an experimentally validated empirical relationship, is commonly applied for interpreting the stress directions based on the orientation of the brittle shear fractures. However, the Mohr-Coulomb failure criterion fails to explain the formation of the low-angle normal fault, high-angle reverse fault, and the conjugate strike-slip fault with an obtuse angle in the ~1 direction. Although it is ten years since the Maximum-Effective-Moment (MEM) criterion was first proposed, and increasingly solid evidence in support of it has been obtained from both observed examples in nature and laboratory experiments, it is not yet a commonly accepted model to use to interpret these anti- Mohr-Coulomb features that are widely observed in the natural world. The deformational behavior of rock depends on its intrinsic mechanical properties and external factors such as applied stresses, strain rates, and temperature conditions related to crustal depths. The occurrence of conjugate shear features with obtuse angles of -110~ in the contractional direction on different scales and at different crustal levels are consistent with the prediction of the MEM criterion, therefore -110° is a reliable indicator for deformation localization that occurred at medium-low strain rates at any crustal levels. Since the strain-rate is variable through time in nature, brittle, ductile, and plastic features may appear within the same rock.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030422, 40972131,40772135 and 41202120)the National Basic Research Program of China(Grant Nos.2009CB219601 and 2006CB202201)the China Postdoctoral Science Foundation Funded Project(2012M510590)
文摘The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals.
基金financially supported by the National Natural Science Foundation of China(Grant No.41530315,41372213)the National Science and Technology Major Project of China(Grant No.2016ZX05066003,2016ZX05066006)the“Climate Change:Carbon Budget and Related Issues”Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05030100)
文摘The fracturing technology for shale gas reservoir is the key to the development of shale gas industrialization.It makes much sense to study the mechanical properties and deformation characteristics of shale,due to its close relationship with the fracability of shale gas reservoir.This paper took marine shale in the Changning area,southern Sichuan Basin of China as the research object.Based on field profile and hand specimen observation,we analyzed the development of natural fractures and collected samples from Wufeng Formation and Longmaxi Formation.Combining with the indoor experiment,we investigated the macroscopic and microscopic structural features and the remarkable heterogeneity of shale samples.Then we illustrated the mechanics and deformation characteristics of shale,through uniaxial compression test and direct shear test.The shale has two types of fracture modes,which depend on the angular relation between loading direction and the bedding plane.Besides,the Wufeng shale has a higher value of brittleness index than the Longmaxi shale,which was calculated using two methods,mechanical parameters and mineral composition.Given the above results,we proposed a fracability evaluation model for shale gas reservoir using the analytic hierarchy process.Four influence factors,brittleness index,fracture toughness,natural fractures and cohesive force,are considered.Finally,under the control of normalized value and weight coefficient of each influence factor,the calculations results indicate that the fracability index of the Wufeng Formation is higher than that of the Longmaxi Formation in Changning area,southern Sichuan Basin.
基金supported financially by the National Natural Science Foundation of China (No.41574021,41474059,41331066,41774088,and 41174063)a research grant from the Institute of Crustal Dynamics,China Earthquake Administration (No.ZDJ2017-23)+4 种基金the CAS/CAFEA International Partnership Program for Creative Research Teams (No.KZZD-EW-TZ-19)the Key Research Program of Frontier Sciences CAS (Chinese Academy of Sciences) (QYZDY-SSW-SYS003)the SKLGED foundation (SKLGED2014-1-1-E)the GOCE Italy Project (the Italian Space Agency and the European Space Agency Endorsement)the China Postdoctoral Science Foundation (No.133014)
文摘Data obtained by GRACE(Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or a point-like seismic source.Herein, we further extend the inversion of GRACE long-wavelength gravity changes to heterogeneous slip distributions during the 2011 Tohoku earthquake using three fault models:(Ⅰ) a constant-strike and constant-dip fault,(Ⅱ) a variable dip fault, and(Ⅲ) a realistically varying strike fault. By removing the post-seismic signal from the time series, and taking the effect of ocean water redistribution into account, we invert for slip models I, II, and III using co-seismic gravity changes measured by GRACE, de-striped by DDK3 decorrelation filter. The total seismic moments of our slip models, with respective values of 4.9×10^(22) Nm, 5.1×10^(22) Nm, and 5.0×10^(22) Nm, are smaller than those obtained by other studies relying on GRACE data. The resulting centroids are also located at greater depths(20 km, 19.8 km,and 17.4 km, respectively). By combining onshore GPS, GPS-Acoustic, and GRACE data, we obtain a jointly inverted slip model with a seismic moment of 4.8×10^(22) Nm, which is larger than the seismic moment obtained using only the GPS displacements. We show that the slip inverted from low degree space-borne gravimetric data, which contains information at the ocean region, is affected by the strike of the arcuate trench. The space-borne gravimetric data help us constrain the source parameters of a megathrust earthquake within the frame of heterogeneous slip models.
基金financially supported by the National Natural Science Foundation of China (Grant No.41174063)
文摘Modern geodetic techniques have developed rapidly in recent years, providing reliable observation data and new effective approaches, and greatly enhancing studies of the Tibetan geodynamics. For instance, the well-known GPS technique has been employed to measure seismic slips for many faults in the Tibetan Plateau. GPS data agree well with the hypothesis of a thickening crust and eastward mass flow. Moreover, absolute gravimetric data have been applied to interpret geophysical phenomena such as crust movement, co-seismic gravity change, GIA, and ground water change. The satellite gravity mission GRACE launched in 2002 provided global gravity models with unprecedentedly high precision and high spatial resolution. It has been used in implementing temporal gravity changes and improving our knowledge of the Earth's interior, including lithosphere dynamics, mantle viscosity and rheology, plateau uplift, and subduction processing. It is noteworthy that gravity presents unique advantages for the study of Tibetan geodynamics because of its sensitivity to mass migration and dynamic redistribution. To date, great advances have been made in applying modern geodetic data in studying dynamic changes of Tibetan plateau. For instance, the horizontal displacement field from GPS data revealed dynamical characteristics of the present-day Tibetan plateau. The combination of gravity anomalies and topographic data describe the tectonic characteristics of Tibetan plateau. The combination of gravity data and GPS data show present properties of the Tibetan plateau such as crust thickening, Moho's subsidence, and plateau uplift. GRACE data were used to estimate the distribution of ice/snow melting. These results demonstrate that mere application of integrated geodetic data as well as geophysical methods and numerical simulations can enhance our knowledge of Tibetan plateau dynamics. It must be pointed out that GRACE data include various geophysical signals such as crust vertical movement, denudation, ice and snow melting, GIA, ground water change, and permafrost degradation. To separate the tectonic information from other impulses, each physical signal must be evaluated and corrected carefully from the GRACE data. The Tibetan geodynamic problem is a complicated and synthetic issue that must be addressed through collaboration of workers in many fields. Succinctly put, although great achievements have been made in studying Tibetan plateau dynamics from each field, the dynamical process remains unclear. Some fundamental problems remain unresolved. They should be solved with modern geodetic data, such as GRACE, GPS, and absolute gravity data, combined with meteorological and geological data, for quantitative analysis of Tibetan plateau dynamics affected by respective geophysical sources. This review article introduces and discusses the scientific importance, advances, problems, and prospects of modern geodesy applied to the study of geodynamic changes of the Tibetan plateau.
基金financially supported by the Public Welfare Project of the Ministry of land and Resources of China (201211024-04)National Key R&D Program of China (2016YFC0600401)+1 种基金National Science Foundation of China (NSFC Grant 41273046)Research Cooperation between Institute and University of Chinese Academy of Sciences Grant (Y552012Y00)
文摘Xitian tin-polymetallic deposit, located in the eastern Hunan Province, SE China, hosts quartz vein and skarn in the contact zone between carbonate and two stages granites. Critical geodynamic questions for South China are whether different types of mineralization form in the same time and how the magmatism–tectonic system controls the ore-forming process. Based on the distribution of the orebodies, six cassiterite samples from different types of mineralization are collected for dating. In-situ LA-MCICP-MS U–Pb isotopic data yielded concordia low intercept ages between 154 and 157 Ma, indicating that different types of mineralization belong to the same magmatism–mineralization system. Coupled with the study of the kinematic indicators, it suggests that the structural control of the wall rocks constrain the types of mineralization. These results provide further evidence of a close temporal link between the structure and the tin-polymetallic mineralization in Xitian deposit. Considering the structure in the district, granite dome plays an important role in the ore-forming process. The age and structural signatures in Xitian deposit are the response to the subduction of Pacific Plate.
基金supported by National Science and Technology Major Project(No2009 ZX 05039-003,2009 ZX 05039-004,2011ZX05060-005)the National Natural Science Foundation of China(No 2010CB428801-1)state-owned land resources investigation(1212010430351)
文摘In this study, a risk-based management model is developed and applied to an industrial zone. The models proposed by the United States Environmental Protection Agency and Han Bing have been improved by adding a residual ratio of volatile organic compounds (VOC) after boiling and deleting the related parameters in half-life. Using this improved model, an integrated process was used to assess human health risk level in the study area. Compared with water quality analysis, the results highlight the importance of applying an integrated approach for decision making on risk levels and water protection. The results of this study demonstrated that: (1) Compared with these permissible level standards in China (GB 3838-2002) and National Primary Drinking Water Regulations of the United States, the residents' daily life had not been affected by the groundwater in this area (except for relative bad water quality of HB3-4 and HB3-6); (2) The typical detected organic contaminants of all groundwater samples were chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethene, and the pollution sources were mainly industrial sources by preliminary investigations; (3) As for groundwater, the non-carcinogenic risk values of all samples do not exceed the permissible level of 1.0 and the carcinogenic risk values are relatively lower than the permissible level of 1.00E-06 to 1.00E-04; (4) Drinking water pathway of trichloroethylene and tetrachloroethylene mainly contribute to increasing the health risk of residents' in study areas; (5) In terms of non-carcinogenic risk and carcinogenic risk, the health risk order for drinking water pathway and dermal contact pathway was: drinking water pathway 〉 dermal contact pathway.
基金supported by the National Natural Science Foundation of China(No.41902141)the Fundamental Research Fund for the Central Universities(No.E1E40403)the PetroChina Innovation Foundation(No.2018D-5007-0103)
文摘This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery.
基金This research was supported financially by the NNSFC(41774088,41331066,42104084,and 41474059)the Key Research Program of Frontier Sciences CAS(Chinese Academy of Sciences)(QYZDY-SSW-SYS003)。
文摘Global mean sea level(GMSL) change is one of the important indicators of global climate change and is a crucial scientific issue of continuing interest. As satellite altimeter data, the Gravity Recovery and Climate Experiment(GRACE) and Argo continue to be updated, especially with the release of GRACE Follow-On(GRACE-FO) data, making it necessary to combine these latest data to estimate sea level change. Determinations on whether the GRACE and GRACE-FO observation systems provide unbiased global observation data have not been effectively evaluated. Therefore, this research mainly investigated the consistency of GRACE and GRACE-FO observation data in studying GMSL change. By comparing the sum of the GMSL calculated by the two gravity satellites and Argo data with the GMSL calculated by satellite altimeters, the discrepancy between GRACE-FO + Argo and satellite altimeter data is about 7.9 ± 2.3 mm, which is likely derived from the inconsistency between GRACE and GRACE-FO data.
基金the National Natural Science Foundation of China(No.41604067,41974093,41331066,and 41774088)the Basic Research Fund of Chinese Academy of Surveying and Mapping(No.AR 1906)+1 种基金the special project of high-resolution Earth observation system(42-Y20A09-9001-17/18)the Key Research Program of Frontier Sciences Chinese Academy of Sciences(QYZDY-SSWSYS003).
文摘In this paper,we study how coseismic deformations calculated in 1066 Earth models are affected by how the models treat Earth discontinuities.From the results of applying models 1066A(continuous)and 1066B(discontinuous),we find that the difference in Love numbers of strike-slip and horizontal tensile sources are bigger than dip-slip and vertical tensile sources.Taken collectively,discontinuities have major effects on Green’s functions of four independent sources.For the near-field coseismic deformations of the 2013 Okhotsk earthquake(Mw 8.3),the overall differences between theoretical calculations in vertical displacement,geoid,and gravity changes caused by discontinuities are 10.52 percent,9.07 percent and 6.19 percent,with RMS errors of 0.624 mm,0.029 mm,and 0.063μGal,respectively.The difference in far-field displacements is small,compared with GPS data,and we can neglect this effect.For the shallow earthquake,2011 Tohoku-Oki earthquake(Mw 9.0),the differences in near-field displacements are 0.030 m(N-S),0.093 m(E-W),and 0.025 m(up-down)in our study area with the ARIA slip model,which gives results closer to GPS data than those from the USGS model.The difference in vertical displacements and gravity changes on the Earth’s surface caused by discontinuities are larger than 10 percent.The difference in the theoretical gravity changes at spatially fixed points truncated to degrees 60,as required by GRACE data,is 0.0016μGal and the discrepancy is 11 percent,with the theoretical spatial gravity changes from 1066B closer to observations than from 1066A.The results show that an Earth model with discontinuities in the medium has a large effect on the calculated coseismic deformations.
基金supported by the International Science and Technology Cooperation Program of China grant (2010DFB20190)the National Natural Science Foundation of China (Grants Nos. 41104058 and 41104057)support from the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2012K030)
文摘Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread con- cerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M- 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occur- rences are critical to improve hazard assessments.
基金financially supported by the National Key Research and Development Program of China(2016YFD0300110,2016YFD0300101)the National Natural Science Foundation of China(31671585,41871253)the Natural Science Foundation of Shandong Province,China(ZR2017ZB0422)。
文摘Under the limited cultivated land area and the pursuit of sustainable agricultural development,it is essential for the safety of grain production to study agricultural management approaches on narrowing the winter wheat yield gap and improving nitrogen use efficiency (NUE) in China.In this study,DSSAT-CERES-Wheat Model is used to simulate winter wheat yield under different agricultural treatments,and we analyze yield gaps and NUE with different management scenarios at regional scales and evaluate the suitable approaches for reducing yield gap and increasing NUE.The results show that,the potential of narrowing yield gap ranges 300–900 kg ha^(–1) with soil nutrients increase,400–1 200 kg ha^(–1) with sowing date adjustment and 0–400 kg ha^(–1) with planting density increase as well as 700–2 200 kg ha^(–1) with adding nitrogen fertilizer.Contribution rates of management measures of soil nutrients,sowing date adjusting,planting density,and nitrogen fertilizers are 5–15%,5–15%,0–4%,and 10–20%,respectively.Difference in nitrogen partial productivity ranges 3–10 kg kg^(–1) for soil nutrients,1–10 kg kg^(–1) for sowing date adjusting,1–5 kg kg^(–1) for planting density increase,and–12–0 kg kg^(–1) for adding nitrogen fertilizers,respectively.It indicates that four treatments can narrow yield gap and improve the NUE in varying degrees,but increasing nitrogen fertilizer leads to the decrease of NUE.
基金supported by National Natural Science Foundation of China (No. 41174085)Chinese Academy of Sciences (KZZD-EW-TZ-19)China Geological Survey (12120113101400)
文摘Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41372213, 41030422)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05030100)
文摘The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-rich shale, including mineral composition, organic matter richness and type, and li- thology stratigraphy, were analyzed, indicating very special characteristics. Meanwhile, the more complex and active tectonic movements in China lead to strong deformation and erosion of organic-rich shale, well-development of fractures and faults, and higher thermal maturity and serious heterogeneity. Co-existence of shale gas, tight sand gas, and coal bed methane (CBM) proposes a new topic: whether it is possible to co-produce these gases to reduce cost. Based on the geologic features, the primary pro- duction issues of shale gas in China were discussed with suggestions.