The advantage distillation(AD)technology has been proven to effectively improve the secret key rate and the communication distance of quantum key distribution(QKD).The mode-pairing quantum key distribution(MP-QKD)prot...The advantage distillation(AD)technology has been proven to effectively improve the secret key rate and the communication distance of quantum key distribution(QKD).The mode-pairing quantum key distribution(MP-QKD)protocol can overcome a fundamental physical limit,known as the Pirandola-Laurenza-Ottaviani-Banchi bound,without requiring global phase-locking.In this work,we propose a method based on multi-step AD to further enhance the performance of MP-QKD.The simulation results show that,compared to one-step AD,multi-step AD achieves better performance in long-distance scenarios and can tolerate a higher quantum bit error rate.Specifically,when the difference between the communication distances from Alice and Bob to Charlie is 25 km,50 km and 75 km,and the corresponding transmission distance exceeds 523 km,512 km and 496 km,respectively,the secret key rate achieved by multi-step AD surpasses that of one-step AD.Our findings indicate that the proposed method can effectively promote the application of MP-QKD in scenarios with high loss and high error rate.展开更多
A mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states is proposed,named HPCS-PDS-MP-QKD protocol,where the light sources at Alice and Bob sides are changed to heralde...A mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states is proposed,named HPCS-PDS-MP-QKD protocol,where the light sources at Alice and Bob sides are changed to heralded pair-coherent sources,and devices designed to implement passive decoy states are included at the transmitter sides to generate the decoy state pulses in the decoy-state window passively.With the defined efficient events and the designed pairing strategy,the key bits and bases can be obtained by data post-processing.Numerical simulation results verify the feasibility of the proposed protocol.The results show that the proposed protocol can exceed PLOB when the pairing interval setting is greater than 10^(3),and the transmission distance exceeds 200 km.When the key transmission distance reaches 300 km and the maximum pairing interval is equivalent to 1,its performance is improved by nearly 1.8 times compared to the original MP-QKD protocol with a weak coherent source(WCS-MP-QKD),and by 6.8 times higher than that of WCS-MPQKD with passive decoy states(WCS-PDS-MP-QKD).Meanwhile,the key transmission distance can reach 480 km,and surpasses the WCS-PDS-MP-QKD protocol by nearly 40 km.When the total pulse length is greater than 10^(11),the key generation rate is almost equal to that of infinite pulses.It is a promising QKD protocol that breaks the PLOB bound without requiring phase tracking and locking,has a longer transmission distance and a higher key generation rate,and eliminates the potential of side channel attack.展开更多
Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,sca...Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,scalability,energy efficiency and the potential for extensive integration.We have achieved BB84 phase encoding and decoding,time-bin phase QKD,and the coherent one-way(COW)protocol on a planar lightwave circuit(PLC)platform.At the optimal temperature,our chip successfully prepared quantum states,performed decoding and calculated the secure key rate of the time-bin phasedecoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate(QBER)of 4.23%.The secure key rate of the COW protocol was 18.18 kbps,with a phase error rate of 3.627%and a time error rate of 0.377%.The uniqueness of this technology lies in its combination of high integration and protocol flexibility,providing an innovative solution for the development of future quantum communication networks.展开更多
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product s...Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.展开更多
Free-space quantum key distribution(QKD)offers broader geographical coverage and more flexible system deployment than fiber-based systems.However,the free-space environment is highly complex,and various attenuation fa...Free-space quantum key distribution(QKD)offers broader geographical coverage and more flexible system deployment than fiber-based systems.However,the free-space environment is highly complex,and various attenuation factors can significantly reduce the key distribution efficiency or even lead to encoding failures.This paper discusses and analyzes the impact of turbulence and fog in mountainous environments on free-space discrete-variable quantum key distribution.Through numerical simulation,this study examines the effects of altitude and visibility on transmittance and turbulence intensity,finding that turbulence intensity decreases with increasing altitude while transmittance increases;improvements in visibility also lead to increased transmittance.Beam wandering due to turbulence is also dominant.Combining these factors,the effects on the total transmittance and the secret key rate are taken into consideration.Our work could provide a reference for the deployment of practical QKD systems in actual mountainous environments.展开更多
Mode-pairing quantum key distribution(MP-QKD)is an excellent scheme that can exceed the repeaterless ratetransmittance bound without complex phase locking.Nevertheless,MP-QKD usually needs to ensure that the communica...Mode-pairing quantum key distribution(MP-QKD)is an excellent scheme that can exceed the repeaterless ratetransmittance bound without complex phase locking.Nevertheless,MP-QKD usually needs to ensure that the communication distances of the two channels are equal.To address the problem,the asymmetric MP-QKD protocol is proposed.In this paper,we enhance the performance of the asymmetric MP-QKD protocol based on the advantage distillation(AD)method without modifying the quantum process.The simulation results show that the AD method can extend the communication distance by about 70 km in the case of asymmetry.And we observe that as the misalignment error increases,the AD method further increases the expandable communication distance.Our work can further enhance the robustness and promote the practical application of the asymmetric MP-QKD.展开更多
In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequenc...In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.展开更多
The robustness of reference-frame-independent measurement-device-independent quantum key distribution(RFIMDI-QKD)against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal ch...The robustness of reference-frame-independent measurement-device-independent quantum key distribution(RFIMDI-QKD)against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal choice for hybrid channels.However,the impact of atmospheric turbulence on transmittance fluctuations remains a significant challenge for enhancing the performance of RFI-MDI-QKD.In this paper,we apply prefixed-threshold real-time selection and advantage distillation techniques to RFI-MDI-QKD in a hybrid channels scenario.Then,we analytically derive formulas for secret key rate in hybrid channels.Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the fiber-only channel.Specifically,the result demonstrates that the maximum transmission distance can be improved by 15 km and 28 km when N=10^(12)and 10^(11).Our work not only provides a more robust key distribution protocol but also establishes a solid theoretical foundation for enhancing the performance of RFI-MDI-QKD in hybrid channels.展开更多
Complex brain diseases seriously endanger human health,and early diagnostic biomarkers and effective treatments are currently lacking.Due to ethical constraints on human research,establishing monkey models is crucial ...Complex brain diseases seriously endanger human health,and early diagnostic biomarkers and effective treatments are currently lacking.Due to ethical constraints on human research,establishing monkey models is crucial to address these issues.With the rapid development of technology,transgenic monkey models of a range of brain diseases,especially autism spectrum disorder(ASD),have been successfully established.However,to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies,there is still a lack of a standard tool,i.e.,a system for collecting and analyzing the daily behaviors of brain disease model monkeys.Therefore,with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes,we established a standard daily behavior collection and analysis system,including behavioral data collection protocols and a monkey daily behavior ethogram(MDBE)for rhesus and cynomolgus monkeys,which are the most commonly used non-human primates in model construction.Then,we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders,Fifth Edition,Text Revision(DSM-5-TR),which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms.We then established a sub-ethogram(ASD monkey core behavior ethogram(MCBE-ASD))specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE.Subsequently,we demonstrated the high reproducibility of the system.展开更多
While viral infections can disturb the host gut microbiome,the dynamic alterations in microbial composition following infection remain poorly characterized.This study identified SRV-8-infected monkeys and classified t...While viral infections can disturb the host gut microbiome,the dynamic alterations in microbial composition following infection remain poorly characterized.This study identified SRV-8-infected monkeys and classified them into five groups based on infection progression.16S rRNA amplicon sequencing revealed significant alterations in the relative and inferred absolute abundance of bacterial genera UCG-002,Agathobacter,Coprococcus,and Holdemanella during the early stage of SRV-8 infection,coinciding with provirus formation.These microbial shifts were accompanied by functional modifications in bacterial communities at the same stage.In contrast,ITS amplicon sequencing indicated no significant differences in fungal composition between healthy wild-type and SRV-8-infected monkeys.Spearman correlation analyses demonstrated close interactions between intestinal bacteria and fungi following SRV-8 infection.Additionally,SRV-8 seropositive groups exhibited significantly elevated mRNA expression levels of pro-inflammatory(TNF-α,IFN-γ,IL-1β,and IL-6)and anti-inflammatory(IL-10)cytokine genes,highlighting close associations between inflammatory cytokines and immune responses.Overall,these findings provide a comprehensive characterization of bacterial and fungal microbiota dynamics and inflammatory cytokine responses associated with SRV-8 infection,clarifying the pathobiological mechanisms underlying SRV-8 infection from the perspective of the gut microbiome.展开更多
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord ...Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord are lacking.Here,by injecting the cholera toxin B subunit into the sciatic nerve of a rhesus monkey,we successfully labeled the motor neurons and primary sensory afferents in the lumbar and sacralspinal cord.Labeled alpha motor neurons were located in lamina IX of the L6–S1 segments,which innervate both flexors and extensors.The labeled primary sensory afferents were mainly myelinated Aβfibers that terminated mostly in laminae I and II of the L4–L7 segments.Together with the labeled proprioceptive afferents,the primary sensory afferents formed excitatory synapses with multiple types of spinal neurons.In summary,our methods successfully traced neuronal connections in the monkey spinal cord and can be used in spinal cord studies when nonhuman primates are used.展开更多
Cropland suitability analysis is a vital tool for ensuring food security and sustainable agriculture,coordinating ecological space with human activity space on the Qinghai-Tibet Plateau(QTP).However,there are few stud...Cropland suitability analysis is a vital tool for ensuring food security and sustainable agriculture,coordinating ecological space with human activity space on the Qinghai-Tibet Plateau(QTP).However,there are few studies on complete and accurate cropland suitability assessments on the QTP,let alone on identifying key potential areas for cropland development.We used a novel assessment model to generate a 30-m cropland suitability map for the QTP.The identification of areas with cropland development potential and the evaluation of potentially available cropland were further integrated into a unified analytical framework.We found that only 10.18%of the study area is suitable for large-scale and permanent cropland.Moreover,approximately 72.75%of the existing cropland was found to be distributed in suitable or marginally suitable areas.Considering the trade-offs related to irrigation water supply convenience,approximately 1.07%of the study area was identified as having high potential for cropland development.Four key potential areas were further identified:the Shannan Valley,the Nyingchi Valley,the Zanda Valley,and the Gonghe Basin.These areas boast abundant potentially available cropland resources and ecological resettlement capacities,which leads us to recommend strategic priorities for comprehensive land consolidation and water development.This study has practical significance for optimizing land resource allocation and guiding decision-making related to ecological migration on the QTP.展开更多
Background:Non-human primates(NPHs),such as rhesus macaques,cynomol-gus monkeys,and Assamese macaques,play a crucial role in biomedical research.However,baseline cytokine and electrolyte data for these three species,p...Background:Non-human primates(NPHs),such as rhesus macaques,cynomol-gus monkeys,and Assamese macaques,play a crucial role in biomedical research.However,baseline cytokine and electrolyte data for these three species,particularly data stratified by age and sex,are limited.Therefore,the aim of this study was to establish and analyze age-and sex-specific cytokine and electrolyte profiles in these three species.Methods:This study included 40 rhesus macaques(21 males,19 females),33 cyn-omolgus monkeys(17 males,16 females),and 45 Assamese macaques(25 males,20 females)classified by age(1-5 years,6-12 years,>13 years)and sex.The levels of 23 immune function indicators and 5 electrolyte indicators were measured.Results:Among the three monkey species,the levels of sCD40L,IL-18,MCP-1,MIP-1β,TGFa,K^(+),Na^(+),and Cl^(-)exhibited species-,sex-,and age-related differences.Comparison within the same species,sex had no significant impact on cytokine levels in NHPs but did affect electrolyte levels,particularly Cl^(-)and Na^(+)levels,in cynomol-gus monkeys and Assamese macaques.Electrolyte levels in NHPs were not affected by age,whereas the levels of certain cytokines,particularly sCD40L,GM-CSF,and IL-10,varied with age.The remaining 21 cytokines demonstrated no significant age-related changes.Conclusions:Significant variations in cytokine and electrolyte levels exist among dif-ferent monkey species,sexes,and age groups.This research provides valuable re-sources for NHP researchers and sets the stage for further exploring the impacts of sex and age on NHP physiology and immune function.展开更多
As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-orien...As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks.However,the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging,due to the limited probability of service success and the inefficient utilization of key resources.Targeting these challenges,this study proposes two key-resource-aware multicast-oriented key provision strategies,namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy.The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks,which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections.Furthermore,the multicast-oriented key provision model is formulated,based on which two heuristic algorithms are designed,i.e.,the shared link distance-resource(SLDR)dependent and the maximum shared link distance-resource(MSLDR)dependent multicast-oriented key provision algorithms.Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks,and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests,the number of shared links,and the key resource utilization.展开更多
In the implementation of quantum key distribution,Security certification is a prerequisite for social deployment.Trans-mitters in decoy-BB84 systems typically employ gain-switched semiconductor lasers(GSSLs)to generat...In the implementation of quantum key distribution,Security certification is a prerequisite for social deployment.Trans-mitters in decoy-BB84 systems typically employ gain-switched semiconductor lasers(GSSLs)to generate optical pulses for encod-ing quantum information.However,the working state of the laser may violate the assumption of pulse independence.Here,we explored the dependence of intensity fluctuation and high-order correlation distribution of optical pulses on driving cur-rents at 2.5 GHz.We found the intensity correlation distribution had a significant dependence on the driving currents,which would affect the final key rate.By utilizing rate equations in our simulation,we confirmed the fluctuation and correlation origi-nated from the instability of gain-switched laser driven at a GHz-repetitive frequency.Finally,we evaluated the impact of inten-sity fluctuation on the secure key rate.This work will provide valuable insights for assessing whether the transmitter is operat-ing at optimal state in practice.展开更多
Welding quality of electron beam welded joint is usually susceptible to the stability of keyhole during welding process.The more stable the keyhole,the better the welding quality.To reveal the evolution mechanism of k...Welding quality of electron beam welded joint is usually susceptible to the stability of keyhole during welding process.The more stable the keyhole,the better the welding quality.To reveal the evolution mechanism of keyhole and welding quality of the electron beam welded joint of magnesium-gadolinium alloy under different scanning path,numerical simulation was conducted for the changes in morphology of keyhole and liquid flow in molten pool.The magnesium-gadolinium alloy was welded by electron beam in vacuum with two different scanning paths,sinusoid path and cochleoid path,indicating the identical heat input,welding speed,and focusing state.The stability of keyhole was mainly related to the frequency of keyhole collapse.When the sinusoid scanning path was adopted,the fluids both inside the molten pool and at keyhole wall were disorder,corresponding to the numerous independent vortices and dramatically chaotic flows at their junctions.The maximum velocity of fluids ranged from 0.79 m/s to 1.02 m/s.The average and maximum depth of keyhole were 3.48 mm and 4.51 mm,respectively,meaning that the keyhole collapsed frequently.As the scanning path was changed into cochleoid mode,the electron beam scanned in a homogeneous manner without abrupt change in direction and speed like sinusoid path at its peaks and troughs.The maximum velocity of fluids was more uniform without drastic variation,ranging from 0.90 m/s to 1.01 m/s.The average and maximum depth of keyhole were decreased to 3.30 mm and 4.05 mm,respectively,indicating the more stable keyhole and alleviated collapse.Both the actual in-situ capture of molten pool signature and porosity inside the weld corresponded to the analysis of the change in keyhole stability.展开更多
Reference-frame-independent quantum key distribution(RFI-QKD)can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process.However,due to imperfections of optica...Reference-frame-independent quantum key distribution(RFI-QKD)can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process.However,due to imperfections of optical devices,there will inevitably exist intensity fluctuations in the source side of the QKD system,which will affect the final secure key rate.To reduce the influence of intensity fluctuations,an improved 3-intensity RFI-QKD scheme is proposed in this paper.After considering statistical fluctuations and implementing global parameter optimization,we conduct corresponding simulation analysis.The results show that our present work can present both higher key rate and a farther transmission distance than the standard method.展开更多
The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-...The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62171144and 62031024)Guangxi Science Foundation(Grant Nos.2025GXNSFAA069137 and GXR-1BGQ2424005)Innovation Project of Guangxi Graduate Education(Grant No.YCBZ2025064)。
文摘The advantage distillation(AD)technology has been proven to effectively improve the secret key rate and the communication distance of quantum key distribution(QKD).The mode-pairing quantum key distribution(MP-QKD)protocol can overcome a fundamental physical limit,known as the Pirandola-Laurenza-Ottaviani-Banchi bound,without requiring global phase-locking.In this work,we propose a method based on multi-step AD to further enhance the performance of MP-QKD.The simulation results show that,compared to one-step AD,multi-step AD achieves better performance in long-distance scenarios and can tolerate a higher quantum bit error rate.Specifically,when the difference between the communication distances from Alice and Bob to Charlie is 25 km,50 km and 75 km,and the corresponding transmission distance exceeds 523 km,512 km and 496 km,respectively,the secret key rate achieved by multi-step AD surpasses that of one-step AD.Our findings indicate that the proposed method can effectively promote the application of MP-QKD in scenarios with high loss and high error rate.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX241191 and SJCX250315)the Open Research Fund of the National Laboratory of Solid State Microstructures(Grant No.M36055)。
文摘A mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states is proposed,named HPCS-PDS-MP-QKD protocol,where the light sources at Alice and Bob sides are changed to heralded pair-coherent sources,and devices designed to implement passive decoy states are included at the transmitter sides to generate the decoy state pulses in the decoy-state window passively.With the defined efficient events and the designed pairing strategy,the key bits and bases can be obtained by data post-processing.Numerical simulation results verify the feasibility of the proposed protocol.The results show that the proposed protocol can exceed PLOB when the pairing interval setting is greater than 10^(3),and the transmission distance exceeds 200 km.When the key transmission distance reaches 300 km and the maximum pairing interval is equivalent to 1,its performance is improved by nearly 1.8 times compared to the original MP-QKD protocol with a weak coherent source(WCS-MP-QKD),and by 6.8 times higher than that of WCS-MPQKD with passive decoy states(WCS-PDS-MP-QKD).Meanwhile,the key transmission distance can reach 480 km,and surpasses the WCS-PDS-MP-QKD protocol by nearly 40 km.When the total pulse length is greater than 10^(11),the key generation rate is almost equal to that of infinite pulses.It is a promising QKD protocol that breaks the PLOB bound without requiring phase tracking and locking,has a longer transmission distance and a higher key generation rate,and eliminates the potential of side channel attack.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)the National Key Research and Development Program of China(Grant No.2018YFA0306403)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43000000).
文摘Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,scalability,energy efficiency and the potential for extensive integration.We have achieved BB84 phase encoding and decoding,time-bin phase QKD,and the coherent one-way(COW)protocol on a planar lightwave circuit(PLC)platform.At the optimal temperature,our chip successfully prepared quantum states,performed decoding and calculated the secure key rate of the time-bin phasedecoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate(QBER)of 4.23%.The secure key rate of the COW protocol was 18.18 kbps,with a phase error rate of 3.627%and a time error rate of 0.377%.The uniqueness of this technology lies in its combination of high integration and protocol flexibility,providing an innovative solution for the development of future quantum communication networks.
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
文摘Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.
文摘Free-space quantum key distribution(QKD)offers broader geographical coverage and more flexible system deployment than fiber-based systems.However,the free-space environment is highly complex,and various attenuation factors can significantly reduce the key distribution efficiency or even lead to encoding failures.This paper discusses and analyzes the impact of turbulence and fog in mountainous environments on free-space discrete-variable quantum key distribution.Through numerical simulation,this study examines the effects of altitude and visibility on transmittance and turbulence intensity,finding that turbulence intensity decreases with increasing altitude while transmittance increases;improvements in visibility also lead to increased transmittance.Beam wandering due to turbulence is also dominant.Combining these factors,the effects on the total transmittance and the secret key rate are taken into consideration.Our work could provide a reference for the deployment of practical QKD systems in actual mountainous environments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies.
文摘Mode-pairing quantum key distribution(MP-QKD)is an excellent scheme that can exceed the repeaterless ratetransmittance bound without complex phase locking.Nevertheless,MP-QKD usually needs to ensure that the communication distances of the two channels are equal.To address the problem,the asymmetric MP-QKD protocol is proposed.In this paper,we enhance the performance of the asymmetric MP-QKD protocol based on the advantage distillation(AD)method without modifying the quantum process.The simulation results show that the AD method can extend the communication distance by about 70 km in the case of asymmetry.And we observe that as the misalignment error increases,the AD method further increases the expandable communication distance.Our work can further enhance the robustness and promote the practical application of the asymmetric MP-QKD.
文摘In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410534)。
文摘The robustness of reference-frame-independent measurement-device-independent quantum key distribution(RFIMDI-QKD)against detection system vulnerabilities and its tolerance to reference frame drifts make it an ideal choice for hybrid channels.However,the impact of atmospheric turbulence on transmittance fluctuations remains a significant challenge for enhancing the performance of RFI-MDI-QKD.In this paper,we apply prefixed-threshold real-time selection and advantage distillation techniques to RFI-MDI-QKD in a hybrid channels scenario.Then,we analytically derive formulas for secret key rate in hybrid channels.Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the fiber-only channel.Specifically,the result demonstrates that the maximum transmission distance can be improved by 15 km and 28 km when N=10^(12)and 10^(11).Our work not only provides a more robust key distribution protocol but also establishes a solid theoretical foundation for enhancing the performance of RFI-MDI-QKD in hybrid channels.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2019B030335001)the STI2030-Major Projects(No.2021ZD0200900)+9 种基金the National Key Research and Development Program of China(Nos.2021YFF0702700 and 2018YFA0801403)the National Natural Science Foundation of China(Nos.81960422,32100801,82101241,82360226,82160923,82260929,82374425,and 32460194)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(No.XDB32060200)the STI2030-Major Projects(Nos.2022ZD0205200 and 2022ZD0212700)the Science and Technology Department of Yunnan Province(Nos.202305AH340006 and 202305AH340007)the Yunnan Fundamental Research Projects(Nos.202201AT070153 and 202201AT070139)the Science and Technology Project of Yunnan Province(No.202101AY070001-001)the Yunnan Revitalization Talent Support Program(No.YNWR-QNBJ2019-043)the CAS“Light of West China”Programthe Yunnan Revitalization Talents Support Plan。
文摘Complex brain diseases seriously endanger human health,and early diagnostic biomarkers and effective treatments are currently lacking.Due to ethical constraints on human research,establishing monkey models is crucial to address these issues.With the rapid development of technology,transgenic monkey models of a range of brain diseases,especially autism spectrum disorder(ASD),have been successfully established.However,to establish practical and effective brain disease models and subsequently apply them to disease mechanism and treatment studies,there is still a lack of a standard tool,i.e.,a system for collecting and analyzing the daily behaviors of brain disease model monkeys.Therefore,with the goal of undertaking a comprehensive and quantitative study of behavioral phenotypes,we established a standard daily behavior collection and analysis system,including behavioral data collection protocols and a monkey daily behavior ethogram(MDBE)for rhesus and cynomolgus monkeys,which are the most commonly used non-human primates in model construction.Then,we used ASD as an application example after referring to the Diagnostic and Statistical Manual of Mental Disorders,Fifth Edition,Text Revision(DSM-5-TR),which is widely used in clinical disease diagnosis to obtain ASD core clinical symptoms.We then established a sub-ethogram(ASD monkey core behavior ethogram(MCBE-ASD))specifically for quantitative assessment of the core clinical symptoms of an ASD monkey model based on MDBE.Subsequently,we demonstrated the high reproducibility of the system.
基金supported by the National Science and Technology Innovation 2030 Major Program(2021ZD0200900)National Key Research and Development Program of China(2022YFF0710901)+3 种基金National Natural Science Foundation of China(82021001,31825018)Biological Resources Program of the Chinese Academy of Sciences(KFJBRP-005)111 Project D18007a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘While viral infections can disturb the host gut microbiome,the dynamic alterations in microbial composition following infection remain poorly characterized.This study identified SRV-8-infected monkeys and classified them into five groups based on infection progression.16S rRNA amplicon sequencing revealed significant alterations in the relative and inferred absolute abundance of bacterial genera UCG-002,Agathobacter,Coprococcus,and Holdemanella during the early stage of SRV-8 infection,coinciding with provirus formation.These microbial shifts were accompanied by functional modifications in bacterial communities at the same stage.In contrast,ITS amplicon sequencing indicated no significant differences in fungal composition between healthy wild-type and SRV-8-infected monkeys.Spearman correlation analyses demonstrated close interactions between intestinal bacteria and fungi following SRV-8 infection.Additionally,SRV-8 seropositive groups exhibited significantly elevated mRNA expression levels of pro-inflammatory(TNF-α,IFN-γ,IL-1β,and IL-6)and anti-inflammatory(IL-10)cytokine genes,highlighting close associations between inflammatory cytokines and immune responses.Overall,these findings provide a comprehensive characterization of bacterial and fungal microbiota dynamics and inflammatory cytokine responses associated with SRV-8 infection,clarifying the pathobiological mechanisms underlying SRV-8 infection from the perspective of the gut microbiome.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金supported by a grant from Ministry of Science and Technology China,No.2022ZD0204704(to WW)the National Natural Science Foundation of China,No.82301572(to XZ)the China Postdoctoral Science Foundation,No.2023M731202(to XZ)。
文摘Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord are lacking.Here,by injecting the cholera toxin B subunit into the sciatic nerve of a rhesus monkey,we successfully labeled the motor neurons and primary sensory afferents in the lumbar and sacralspinal cord.Labeled alpha motor neurons were located in lamina IX of the L6–S1 segments,which innervate both flexors and extensors.The labeled primary sensory afferents were mainly myelinated Aβfibers that terminated mostly in laminae I and II of the L4–L7 segments.Together with the labeled proprioceptive afferents,the primary sensory afferents formed excitatory synapses with multiple types of spinal neurons.In summary,our methods successfully traced neuronal connections in the monkey spinal cord and can be used in spinal cord studies when nonhuman primates are used.
基金The Second Tibetan Plateau Scientific Expedition and Research ProgramNo.2019QZKK0406。
文摘Cropland suitability analysis is a vital tool for ensuring food security and sustainable agriculture,coordinating ecological space with human activity space on the Qinghai-Tibet Plateau(QTP).However,there are few studies on complete and accurate cropland suitability assessments on the QTP,let alone on identifying key potential areas for cropland development.We used a novel assessment model to generate a 30-m cropland suitability map for the QTP.The identification of areas with cropland development potential and the evaluation of potentially available cropland were further integrated into a unified analytical framework.We found that only 10.18%of the study area is suitable for large-scale and permanent cropland.Moreover,approximately 72.75%of the existing cropland was found to be distributed in suitable or marginally suitable areas.Considering the trade-offs related to irrigation water supply convenience,approximately 1.07%of the study area was identified as having high potential for cropland development.Four key potential areas were further identified:the Shannan Valley,the Nyingchi Valley,the Zanda Valley,and the Gonghe Basin.These areas boast abundant potentially available cropland resources and ecological resettlement capacities,which leads us to recommend strategic priorities for comprehensive land consolidation and water development.This study has practical significance for optimizing land resource allocation and guiding decision-making related to ecological migration on the QTP.
基金National Resources Center for Non Human PrimatesNational Key R&D Project of China,Grant/Award Number:2021YFF0702804。
文摘Background:Non-human primates(NPHs),such as rhesus macaques,cynomol-gus monkeys,and Assamese macaques,play a crucial role in biomedical research.However,baseline cytokine and electrolyte data for these three species,particularly data stratified by age and sex,are limited.Therefore,the aim of this study was to establish and analyze age-and sex-specific cytokine and electrolyte profiles in these three species.Methods:This study included 40 rhesus macaques(21 males,19 females),33 cyn-omolgus monkeys(17 males,16 females),and 45 Assamese macaques(25 males,20 females)classified by age(1-5 years,6-12 years,>13 years)and sex.The levels of 23 immune function indicators and 5 electrolyte indicators were measured.Results:Among the three monkey species,the levels of sCD40L,IL-18,MCP-1,MIP-1β,TGFa,K^(+),Na^(+),and Cl^(-)exhibited species-,sex-,and age-related differences.Comparison within the same species,sex had no significant impact on cytokine levels in NHPs but did affect electrolyte levels,particularly Cl^(-)and Na^(+)levels,in cynomol-gus monkeys and Assamese macaques.Electrolyte levels in NHPs were not affected by age,whereas the levels of certain cytokines,particularly sCD40L,GM-CSF,and IL-10,varied with age.The remaining 21 cytokines demonstrated no significant age-related changes.Conclusions:Significant variations in cytokine and electrolyte levels exist among dif-ferent monkey species,sexes,and age groups.This research provides valuable re-sources for NHP researchers and sets the stage for further exploring the impacts of sex and age on NHP physiology and immune function.
基金supported by the National Natural Science Foundation of China(Grant Nos.62201276,62350001,U22B2026,and 62425105)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)the Key R&D Program(Industry Foresight and Key Core Technologies)of Jiangsu Province(Grant No.BE2022071)。
文摘As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks.However,the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging,due to the limited probability of service success and the inefficient utilization of key resources.Targeting these challenges,this study proposes two key-resource-aware multicast-oriented key provision strategies,namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy.The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks,which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections.Furthermore,the multicast-oriented key provision model is formulated,based on which two heuristic algorithms are designed,i.e.,the shared link distance-resource(SLDR)dependent and the maximum shared link distance-resource(MSLDR)dependent multicast-oriented key provision algorithms.Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks,and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests,the number of shared links,and the key resource utilization.
基金support from the National Natural Science Foundation of China(62250710162).
文摘In the implementation of quantum key distribution,Security certification is a prerequisite for social deployment.Trans-mitters in decoy-BB84 systems typically employ gain-switched semiconductor lasers(GSSLs)to generate optical pulses for encod-ing quantum information.However,the working state of the laser may violate the assumption of pulse independence.Here,we explored the dependence of intensity fluctuation and high-order correlation distribution of optical pulses on driving cur-rents at 2.5 GHz.We found the intensity correlation distribution had a significant dependence on the driving currents,which would affect the final key rate.By utilizing rate equations in our simulation,we confirmed the fluctuation and correlation origi-nated from the instability of gain-switched laser driven at a GHz-repetitive frequency.Finally,we evaluated the impact of inten-sity fluctuation on the secure key rate.This work will provide valuable insights for assessing whether the transmitter is operat-ing at optimal state in practice.
基金financially supported by China National Postdoctoral Program for Innovative Talents(BX20230269)National Key R&D Program of China(2022YFB4600800)Fundamental Research Funds for The Central Universities(2042024kf0015).
文摘Welding quality of electron beam welded joint is usually susceptible to the stability of keyhole during welding process.The more stable the keyhole,the better the welding quality.To reveal the evolution mechanism of keyhole and welding quality of the electron beam welded joint of magnesium-gadolinium alloy under different scanning path,numerical simulation was conducted for the changes in morphology of keyhole and liquid flow in molten pool.The magnesium-gadolinium alloy was welded by electron beam in vacuum with two different scanning paths,sinusoid path and cochleoid path,indicating the identical heat input,welding speed,and focusing state.The stability of keyhole was mainly related to the frequency of keyhole collapse.When the sinusoid scanning path was adopted,the fluids both inside the molten pool and at keyhole wall were disorder,corresponding to the numerous independent vortices and dramatically chaotic flows at their junctions.The maximum velocity of fluids ranged from 0.79 m/s to 1.02 m/s.The average and maximum depth of keyhole were 3.48 mm and 4.51 mm,respectively,meaning that the keyhole collapsed frequently.As the scanning path was changed into cochleoid mode,the electron beam scanned in a homogeneous manner without abrupt change in direction and speed like sinusoid path at its peaks and troughs.The maximum velocity of fluids was more uniform without drastic variation,ranging from 0.90 m/s to 1.01 m/s.The average and maximum depth of keyhole were decreased to 3.30 mm and 4.05 mm,respectively,indicating the more stable keyhole and alleviated collapse.Both the actual in-situ capture of molten pool signature and porosity inside the weld corresponded to the analysis of the change in keyhole stability.
基金financial support from the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key R&D Program(Grant No.BE2022071)the Natural Science Foundation of Jiangsu Province(Grant No.BK20192001)+1 种基金the National Natural Science Foundation of China(Grant No.12074194)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX220954)。
文摘Reference-frame-independent quantum key distribution(RFI-QKD)can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process.However,due to imperfections of optical devices,there will inevitably exist intensity fluctuations in the source side of the QKD system,which will affect the final secure key rate.To reduce the influence of intensity fluctuations,an improved 3-intensity RFI-QKD scheme is proposed in this paper.After considering statistical fluctuations and implementing global parameter optimization,we conduct corresponding simulation analysis.The results show that our present work can present both higher key rate and a farther transmission distance than the standard method.
基金supported in part by the National Natural Science Foundation of China(Numbers 62171445,62471477 and 62201592).
文摘The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.