Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop...Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.展开更多
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve...In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.展开更多
The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptibl...The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptible to security threats.One significant risk to cloud networks is Distributed Denial-of-Service(DoS)attacks,where attackers aim to overcome a target system with excessive data and requests.Among these,low-rate DoS(LR-DoS)attacks present a particular challenge to detection.By sending bursts of attacks at irregular intervals,LR-DoS significantly degrades the targeted system’s Quality of Service(QoS).The low-rate nature of these attacks confuses their detection,as they frequently trigger congestion control mechanisms,leading to significant instability in IoT systems.Therefore,to detect the LR-DoS attack,an innovative deep-learning model has been developed for this research work.The standard dataset is utilized to collect the required data.Further,the deep feature extraction process is executed using the Residual Autoencoder with Sparse Attention(ResAE-SA),which helps derive the significant feature required for detection.Ultimately,the Adaptive Dense Recurrent Neural Network(ADRNN)is implemented to detect LR-DoS effectively.To enhance the detection process,the parameters present in the ADRNN are optimized using the Renovated Random Attribute-based Fennec Fox Optimization(RRA-FFA).The proposed optimization reduces the False Discovery Rate and False Positive Rate,maximizing the Matthews Correlation Coefficient from 23,70.8,76.2,84.28 in Dataset 1 and 70.28,73.8,74.1,82.6 in Dataset 2 on EPC-ADRNN,DPO-ADRNN,GTO-ADRNN,FFA-ADRNN respectively to 95.8 on Dataset 1 and 91.7 on Dataset 2 in proposed model.At batch size 4,the accuracy of the designed RRA-FFA-ADRNN model progressed by 9.2%to GTO-ADRNN,11.6%to EFC-ADRNN,10.9%to DPO-ADRNN,and 4%to FFA-ADRNN for Dataset 1.The accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%,9.09%,11.6%,and 10.9%over FFCNN,SVM,RNN,and DRNN,using Dataset 2,showing a better improvement in accuracy with that of the proposed RRA-FFA-ADRNN model with 95.7%using Dataset 1 and 94.1%with Dataset 2,which is better than the existing baseline models.展开更多
As the global economy develops and people's awareness of environmental protection increases,the efficient scheduling of production lines in workshops has received more and more attention.However,there is very litt...As the global economy develops and people's awareness of environmental protection increases,the efficient scheduling of production lines in workshops has received more and more attention.However,there is very little research focusing on distributed scheduling for heterogeneous factories.This study addresses a multi-objective distributed heterogeneous permutation flow shop scheduling problem with sequence-dependent setup times(DHPFSP-SDST).The objective is to optimize the trade-off between the maximum completion time(Makespan)and total energy consumption.First,to describe the concerned problems,we establish a mathematical model.Second,we use the artificial bee colony(ABC)algorithm to optimize the two objectives,incorporating five local search strategies tailored to the problem characteristics to enhance the algorithm's performance.Third,to improve the convergence speed of the algorithm,a Q-learning based strategy is designed to select the appropriated local search operator during iterations.Finally,based on experiments conducted on 72 instances,statistical analysis and discussions show that the Q-learning based ABC algorithm can effectively solve the problems better than its peers.展开更多
基金supported in part by the National Key Research and Development Program of China(2022YFD2001200)the National Natural Science Foundation of China(62176238,61976237,62206251,62106230)+3 种基金China Postdoctoral Science Foundation(2021T140616,2021M692920)the Natural Science Foundation of Henan Province(222300420088)the Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT023)the Program for Science&Technology Innovation Teams in Universities of Henan Province(23IRTSTHN010).
文摘Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
基金supported in part by National Natural Science Foundation of China(62106230,U23A20340,62376253,62176238)China Postdoctoral Science Foundation(2023M743185)Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications Open Fundation(BDIC-2023-A-007)。
文摘In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.
基金funded by the Ministry of Higher Education Malaysia,Fundamental Research Grant Scheme(FRGS),FRGS/1/2024/ICT07/UPNM/02/1.
文摘The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptible to security threats.One significant risk to cloud networks is Distributed Denial-of-Service(DoS)attacks,where attackers aim to overcome a target system with excessive data and requests.Among these,low-rate DoS(LR-DoS)attacks present a particular challenge to detection.By sending bursts of attacks at irregular intervals,LR-DoS significantly degrades the targeted system’s Quality of Service(QoS).The low-rate nature of these attacks confuses their detection,as they frequently trigger congestion control mechanisms,leading to significant instability in IoT systems.Therefore,to detect the LR-DoS attack,an innovative deep-learning model has been developed for this research work.The standard dataset is utilized to collect the required data.Further,the deep feature extraction process is executed using the Residual Autoencoder with Sparse Attention(ResAE-SA),which helps derive the significant feature required for detection.Ultimately,the Adaptive Dense Recurrent Neural Network(ADRNN)is implemented to detect LR-DoS effectively.To enhance the detection process,the parameters present in the ADRNN are optimized using the Renovated Random Attribute-based Fennec Fox Optimization(RRA-FFA).The proposed optimization reduces the False Discovery Rate and False Positive Rate,maximizing the Matthews Correlation Coefficient from 23,70.8,76.2,84.28 in Dataset 1 and 70.28,73.8,74.1,82.6 in Dataset 2 on EPC-ADRNN,DPO-ADRNN,GTO-ADRNN,FFA-ADRNN respectively to 95.8 on Dataset 1 and 91.7 on Dataset 2 in proposed model.At batch size 4,the accuracy of the designed RRA-FFA-ADRNN model progressed by 9.2%to GTO-ADRNN,11.6%to EFC-ADRNN,10.9%to DPO-ADRNN,and 4%to FFA-ADRNN for Dataset 1.The accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%,9.09%,11.6%,and 10.9%over FFCNN,SVM,RNN,and DRNN,using Dataset 2,showing a better improvement in accuracy with that of the proposed RRA-FFA-ADRNN model with 95.7%using Dataset 1 and 94.1%with Dataset 2,which is better than the existing baseline models.
基金supported by the Science and Technology Development Fund(FDCT),Macao SAR(No.0019/2021/A)National Natural Science Foundation of China(No.62173356)+2 种基金Zhuhai Industry-University-Research Project with Hongkong and Macao(No.ZH22017002210014PWC)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011531)Key Technologies for Scheduling and Optimization of Complex Distributed Manufacturing Systems(No.22JR10KA007).
文摘As the global economy develops and people's awareness of environmental protection increases,the efficient scheduling of production lines in workshops has received more and more attention.However,there is very little research focusing on distributed scheduling for heterogeneous factories.This study addresses a multi-objective distributed heterogeneous permutation flow shop scheduling problem with sequence-dependent setup times(DHPFSP-SDST).The objective is to optimize the trade-off between the maximum completion time(Makespan)and total energy consumption.First,to describe the concerned problems,we establish a mathematical model.Second,we use the artificial bee colony(ABC)algorithm to optimize the two objectives,incorporating five local search strategies tailored to the problem characteristics to enhance the algorithm's performance.Third,to improve the convergence speed of the algorithm,a Q-learning based strategy is designed to select the appropriated local search operator during iterations.Finally,based on experiments conducted on 72 instances,statistical analysis and discussions show that the Q-learning based ABC algorithm can effectively solve the problems better than its peers.