期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of transport on aerosols over the eastern slope of the Tibetan Plateau:synergistic contribution of Southeast Asia and the Sichuan Basin 被引量:1
1
作者 SU Hong-Juan XIN Jin-Yuan +8 位作者 MA Yong-Jing LIU Zirui WEN Tian-Xue WANG Shi-Gong FAN Guang-Zhou LI Wei WANG Lu HE Zhi-Ming WANG Yue-Si 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第5期425-431,共7页
The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to Dec... The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to December 2014.The annual mean aerosol optical depth(AOD)was 0.35±0.23,and the?ngstr?m exponent was 1.0±0.38.The AOD exhibited higher values in summer and winter,but lower values in spring and autumn.Dividing the observational periods into dry and wet seasons,the authors found that the concentrations of K^+,elemental carbon,secondary inorganic aerosols,and primary and secondary organic carbon in the dry(wet)season were 0.29(0.21),0.88(0.60),7.4(4.5),7.5(5.1),and 3.9(12)μg m?3,respectively.Combined with trajectory analysis,the authors found that higher concentrations of K^+,elemental carbon,and primary organic carbon indicated the effects of biomass burning from Southeast Asia during the dry season.However,the oxidation of volatile organic compounds was the main source of aerosols during the wet season,which originated from the Sichuan Basin. 展开更多
关键词 Tibetan Plateau aerosol optical depth aerosol components biomass burning regional transport
在线阅读 下载PDF
Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region 被引量:3
2
作者 Xiushu QIE Shanfeng YUAN +24 位作者 Zhixiong CHEN Dongfeng WANG Dongxia LIU Mengyu SUN Zhuling SUN Abhay SRIVASTAVA Hongbo ZHANG Jingyu LU Hui XIAO Yongheng BI Liang FENG Ye TIAN Yan XU Rubin JIANG Mingyuan LIU Xian XIAO Shu DUAN Debin SU Chengyun SUN Wenjing XU Yijun ZHANG Gaopeng LU Da-Lin ZHANG Yan YIN Ye YU 《Science China Earth Sciences》 SCIE EI CSCD 2021年第1期10-26,共17页
The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan regio... The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan region(BMR)during the warm season from 2014 to 2018.The aim of the project was to understand how dynamical,microphysical and electrical processes interact in severe thunderstorms in the BMR,and how to assimilate lightning data in numerical weather prediction models to improve severe thunderstorm forecasts.The platforms used in the field campaign included the Beijing Lightning Network(BLNET,consisting of 16 stations),2 X-band dual linear polarimetric Doppler radars,and 4 laser raindrop spectrometers.The collaboration also made use of the China Meteorological Administration’s mesoscale meteorological observation network in the Beijing-Tianjin-Hebei region.Although diverse thunderstorm types were documented,it was found that squall lines and multicell storms were the two major categories of severe thunderstorms with frequent lightning activity and extreme rainfall or unexpected local short-duration heavy rainfall resulting in inundations in the central urban area,influenced by the terrain and environmental conditions.The flash density maximums were found in eastern Changping District,central and eastern Shunyi District,and the central urban area of Beijing,suggesting that the urban heat island effect has a crucial role in the intensification of thunderstorms over Beijing.In addition,the flash rate associated with super thunderstorms can reach hundreds of flashes per minute in the central city regions.The super(5%of the total),strong(35%),and weak(60%)thunderstorms contributed about 37%,56%,and 7%to the total flashes in the BMR,respectively.Owing to the close connection between lightning activity and the thermodynamic and microphysical characteristics of the thunderstorms,the lightning flash rate can be used as an indicator of severe weather events,such as hail and short-duration heavy rainfall.Lightning data can also be assimilated into numerical weather prediction models to help improve the forecasting of severe convection and precipitation at the cloud-resolved scale,through adjusting or correcting the thermodynamic and microphysical parameters of the model. 展开更多
关键词 Lightning 3D location Dual linear polarimetric Doppler radar Severe thunderstorm Lightning data assimilation HAIL Short-term heavy precipitation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部