Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis,a worldwide prevalent inflammatory disease.However,a systematic characterization and comprehensive understandi...Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis,a worldwide prevalent inflammatory disease.However,a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking.Here,we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging,by which a panel of cell type-specific signatures were elucidated.Epithelial cells were identified as the most affected cell types by aging in the gingiva.Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis,which declined during aging in epithelial cells,especially in basal cells.The decline of YAP activity during aging was confrmed in the human gingival tissues,and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects.Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases,with the ultimate goal of advancing periodontal health and promoting healthy aging.展开更多
Dear Editor,Cellular senescence is characterized by growth arrest and the onset of a senescence-associated secretory phenotype (SASP)(Consortium et al., 2023;Liu et al., 2023;Zhang et al., 2023). Consequently, senesce...Dear Editor,Cellular senescence is characterized by growth arrest and the onset of a senescence-associated secretory phenotype (SASP)(Consortium et al., 2023;Liu et al., 2023;Zhang et al., 2023). Consequently, senescent cells that accumulate within aged organs have the capacity to disseminate pro-senescence and pro-inflammatory signals, promoting structural tissue deterioration and functional decline, culminating in organismal aging (Cai et al., 2022;Consortium et al., 2024).展开更多
Hypoxia-inducible factor(HIF-1α),a core transcription factor responding to changes in cellular oxygen levels,is closely associated with a wide range of physiological and pathological conditions.However,its differenti...Hypoxia-inducible factor(HIF-1α),a core transcription factor responding to changes in cellular oxygen levels,is closely associated with a wide range of physiological and pathological conditions.However,its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive.Here,we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-ia-deficient human vascular cells including vascular endothelial cells,vascular smooth muscle cells,and mesenchymal stem cells(MsCs),as a platform for discovering cell type-specific hypox-ia-induced response mechanisms.Through comparative molecular profiling across cell types under normoxic and hypoxic conditions,we provide insight into the indispensable role of HIF-1αin the promotion of ischemic vascular regeneration.We found human MSCs to be the vascular cell type most susceptible to HIF-1a deficiency,and that transcriptional inactivation of ANKZF1,an effector of HIF-1a,impaired pro-angiogenic processes.Altogether,our findings deepen the understanding of HIF-ia in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.展开更多
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders,the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown.Here,we report that the expression of ...Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders,the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown.Here,we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem celis(hMSCs).Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration,increases mitochondrial reactive oxygen species(Ros)production,and accelerates cellular senescence.Mechanistically,the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes,especially several key subunits of complex III including UQCRC2.Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs.These findings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis,particularly for the mitochondrial respiration complex Il,thus providing a new potential target to counteract human stem cell senescence.展开更多
文摘Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis,a worldwide prevalent inflammatory disease.However,a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking.Here,we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging,by which a panel of cell type-specific signatures were elucidated.Epithelial cells were identified as the most affected cell types by aging in the gingiva.Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis,which declined during aging in epithelial cells,especially in basal cells.The decline of YAP activity during aging was confrmed in the human gingival tissues,and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects.Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases,with the ultimate goal of advancing periodontal health and promoting healthy aging.
基金supported by the National Natural Science Foundation of China (82125011, 81921006, 92149301, 82322025, 82122024)the National Key Research and Development Program of China(2020YFA0804000, 2022YFA1103700, 2020YFA0112200, 2021YFF1201000, the STI2030-Major Projects-2021ZD0202400)+9 种基金the National Natural Science Foundation of China (92168201, 82330044, 32341001, 92049304, 92049116, 32121001, 82192863, 82071588, 82361148130, 82361148131, 82271600)CAS Project for Young Scientists in Basic Research (YSBR-076, YSBR-012)the Program of the Beijing Natural Science Foundation (Z230011)the Informatization Plan of Chinese Academy of Sciences (CAS-WX2022SDC-XK14)New Cornerstone Science Foundation through the XPLORER PRIZE (2021-1045)Youth Innovation Promotion Association of CAS (E1CAZW0401, 2022083)Excellent Young Talents Program of Capital Medical University (12300927)The Project for Technology Development of Beijing-affiliated Medical Research Institutes (11000023T000002036310)Excellent Young Talents Training Program for the Construction of Beijing Municipal University Teacher Team (BPHR202203105)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)。
文摘Dear Editor,Cellular senescence is characterized by growth arrest and the onset of a senescence-associated secretory phenotype (SASP)(Consortium et al., 2023;Liu et al., 2023;Zhang et al., 2023). Consequently, senescent cells that accumulate within aged organs have the capacity to disseminate pro-senescence and pro-inflammatory signals, promoting structural tissue deterioration and functional decline, culminating in organismal aging (Cai et al., 2022;Consortium et al., 2024).
基金supported by the National Key Research and Development Program of China (Nos.2020YFA0804000,2022YFA1103700,2020YFA0112200,2021YFF1201005,the ST12030-Major Projects-2021ZD0202400,2021YFA1101401)the National Natural Science Foundation of China (Nos.81921006,82125011,92149301,92168201,91949209,92049304,92049116,32121001,82192863,82122024,82071588,and 82201714)+10 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA1000000)CAS Project for Young Scientists in Basic Research (No.YSBR-076 and YSBR-012)the Program of the Beijing Natural Science Foundation (No.Z190019)The Pilot Project for Public Welfare Development and Reform of Beijing-affliated Medical Research Institutes (No.110000227000000461062)the Excellent Young Talents Program of Capital Medical University (12300927)the Excellent Young Talents Training Program for the Construction of Beiing Municipal University Teacher Team (BPHR202203105)Youth Innovation Promotion Association of CAS (No.E1CAZW0401)Young Elite Scientists Sponsorship Program by CAST (No.YESS20200012)the Informatization Plan of Chinese Academy of Sciences (Nos.CAS-WX2021SF-0301,CAS-WX2022SDC-XK14,and CAS-WX2021SF-0101)The Fellowship of China Postdoctoral Science Foundation (2022M712216)the Tencent Foundation (2021-1045).
文摘Hypoxia-inducible factor(HIF-1α),a core transcription factor responding to changes in cellular oxygen levels,is closely associated with a wide range of physiological and pathological conditions.However,its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive.Here,we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-ia-deficient human vascular cells including vascular endothelial cells,vascular smooth muscle cells,and mesenchymal stem cells(MsCs),as a platform for discovering cell type-specific hypox-ia-induced response mechanisms.Through comparative molecular profiling across cell types under normoxic and hypoxic conditions,we provide insight into the indispensable role of HIF-1αin the promotion of ischemic vascular regeneration.We found human MSCs to be the vascular cell type most susceptible to HIF-1a deficiency,and that transcriptional inactivation of ANKZF1,an effector of HIF-1a,impaired pro-angiogenic processes.Altogether,our findings deepen the understanding of HIF-ia in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
基金supported by the National Key Research and Development Program of China(2018YFC2000100)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16000000)+9 种基金the National Natural Science Foundation of China(8190143281921006,82125011,92149301,92168201,91949209,92049304,92049116,32121001,82192863,82122024,82071588,81861168034,81922027,81870228,32100937,31900524,82201727)the National Key Research and Development Program of China(2020YFA0804000,2020YFA0113400,2020YFA0112200,2018YFA0107203,the STI2030-Major Projects-2021ZD0202400,2021YFF1201005,2022YFA1103700,2022YFA1103800)CAS Project for Young Scientists in Basic Research(YSBR-076,YSBR-012)the Program of the Beijing Natural Science Foundation(Z190019,JQ20031)K.C.Wong Education Foundation(GJTD-2019-06,GJTD-2019-08)Young Elite Scientists Sponsorship Program by CAST(YESS20200012)Youth Innovation Promotion Association of CAS(EiCAZW0401)the Pilot Project for Public Welfare Development and Reform of Beijing-affliated Medical Research Institutes(11000022T000000461062)the Informatization Plan of Chinese Academy of Sciences(CAS-WX2021SF-0301,CASWX2022SDC-XK14)CAS Special Research Assistant(SRA)Program,and the Tencent Foundation(2021-1045).
文摘Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders,the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown.Here,we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem celis(hMSCs).Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration,increases mitochondrial reactive oxygen species(Ros)production,and accelerates cellular senescence.Mechanistically,the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes,especially several key subunits of complex III including UQCRC2.Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs.These findings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis,particularly for the mitochondrial respiration complex Il,thus providing a new potential target to counteract human stem cell senescence.