期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Pressure-Modulated Activation Energy as a Unified Descriptor of Mechanical Behavior in Metallic Glass
1
作者 Huanrong Liu Jian Li +1 位作者 Shan Zhang Pengfei Guan 《Chinese Physics Letters》 2026年第1期71-82,共12页
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ... The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework. 展开更多
关键词 pressure modulated activation energy predicting mechanical properties metallic glass relaxation processes functional properties mechanical behavior simulations varied protocols structural configurational descriptors
原文传递
Recent achievements in rare earth modified metal oxides for environmental and energy applications:A review
2
作者 Yicheng Li Qian Liu +2 位作者 Tianhao Li Hao Bi Zhurui Shen 《Chinese Chemical Letters》 2025年第9期112-127,共16页
Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as lumi... Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as luminescent materials,magnetic materials,catalytic materials,electronic devices,they have an important strategic position.In the field of electrocatalysis,rare earth metal elements have great potential for development due to their unique 4f electron layer structure,spin orbit coupling,high reactivity,controllable coordination number,and rich optical properties.However,there is currently a lack of systematic reviews on the modification strategies of rare earth metal elements and the latest developments in electrocatalysis.Therefore,in order to stimulate the enthusiasm of researchers,this review focuses on the application progress of rare earth metal element modified metal oxides in multiple fields such as wastewater treatment,hydrogen peroxide synthesis,hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and machine learning assisted research.In depth analysis of its electrocatalytic mechanism in various application scenarios and key factors affecting electrocatalytic performance.This review is of great significance for further developing high-performance and multifunctional electrocatalysts,and is expected to provide strong support for the development of energy,environment,and chemical industries. 展开更多
关键词 Rare earth metal ELECTROCATALYSIS Metal oxides Machine learning Environment and energy
原文传递
Regulating Rh-based rare earth nanoalloy electroc atalysts by scandium,yttrium for accelerated hydrogen evolution kinetics
3
作者 Shuai Zhang Leilei Yin Yaping Du 《Journal of Rare Earths》 2025年第6期1188-1194,I0004,共8页
The construction of rare earth(RE)alloy catalysts offers a route to harness the unique electronic structure of RE.Within the alloy,RE can fine-tune the electronic configuration of the active element,such as rhodium(Rh... The construction of rare earth(RE)alloy catalysts offers a route to harness the unique electronic structure of RE.Within the alloy,RE can fine-tune the electronic configuration of the active element,such as rhodium(Rh),via the ligand effect,optimizing the electrochemical reaction pathway.However,the challenging negative reduction potential of RE has impeded the progress in developing RE alloys,particularly nanoalloy catalysts.In this study,Rh_(3)Sc/C and Rh_(3)Y/C nanoalloys were synthesized using a sodium vapor reduction strategy for application as hydrogen evolution reaction(HER)catalysts.Elec-trochemical tests reveal that Rh-RE alloy catalysts exhibit significantly improved electrocatalytic activity in 1 mol/L KOH.Notably,Rh_(3)Y/C demonstrates exceptional HER performance,achieving a low over-potential of only 31 mV at 10 mA/cm^(2),surpassing the 50 mV observed for Rh/C.Furthermore,the current density of Rh_(3)Y/C at an 80 mV overpotential is 3.9 times that of Rh/C.This study sheds light on the remarkable catalytic potential of Rh-RE alloys,paving the way for the future expansion of RE nanoalloy systems. 展开更多
关键词 Rare earths Hydrogen evolution reaction Rh-rare earth alloys NANOALLOY ELECTROCATALYSIS
原文传递
In-situ Ultrafast Transmission Electron Microscopy:Advancing Ultrafast Dynamics Research under Multi-Field Coupling at the Nanoscale
4
作者 Shaozheng Ji Lenan Chen Xuewen Fu 《Chinese Physics Letters》 2025年第1期99-101,共3页
In recent years,the development of ultrafast transmission electron microscopy(UTEM)has created new opportunities for studying dynamic processes at the nanoscale with unprecedented temporal resolution.~([1–3])The sign... In recent years,the development of ultrafast transmission electron microscopy(UTEM)has created new opportunities for studying dynamic processes at the nanoscale with unprecedented temporal resolution.~([1–3])The significant advances in femtosecond and even attosecond temporal resolution are achieved through the integration of the pump-probe principle with transmission electron microscopy(TEM). 展开更多
关键词 resolution. ELECTRON COUPLING
原文传递
Topology guided construction of MOF by linking Zr-MOLs with perylene diimide motifs for photocatalytic oxidation
5
作者 Chao Wei Zi-Yi Zhao +6 位作者 Jing-Jing Li Jinli Zhang Ming Lu Xiao-Qin Liu Guoliang Liu Jiandong Pang Lin-Bing Sun 《Chinese Journal of Structural Chemistry》 2025年第8期6-11,共6页
Metal-organic frameworks(MOFs)with new topologies and enhanced properties can be obtained by connecting metal-organic layers(MOLs)using multifunctional linkers.However,new topologies constructed by this method using l... Metal-organic frameworks(MOFs)with new topologies and enhanced properties can be obtained by connecting metal-organic layers(MOLs)using multifunctional linkers.However,new topologies constructed by this method using linear-shaped ligands have not yet been explored.Herein,we present the design of NUT-123 by incorporating a near-linear perylene diimide(PDI)derivate,PDI-CH_(3)-COOH,into the preselected zirconium-based MOLs.3D electron diffraction confirms the successful construction of a novel topology in NUT-123.Furthermore,the uniformly dispersed PDI groups within the structure confer enhance photocatalytic capability while effectively circumventing the self-aggregation of PDI-CH_(3)-COOH.NUT-123 exhibits enhanced efficiency and selectivity in sulfide oxidation and demonstrates excellent substrate compatibility,achieving 100%conversion of various organic sulfides.Mechanistic studies indicate that the formation of sulfoxides is facilitated by concurrent electron and energy transfer.This work fills the gap in constructing a new topology by connecting MOLs with linear-shaped linkers and provides a photocatalyst for selective sulfide oxidation. 展开更多
关键词 Metal-organic frameworks Perylene diimide New topology PHOTOCATALYSIS Sulfide oxidation
原文传递
Graphene/F_(16)CuPc synaptic transistor for the emulation of multiplexed neurotransmission
6
作者 Zhipeng Xu Yao Ni +3 位作者 Mingxin Sun Yiming Yuan Ning Wu Wentao Xu 《Journal of Semiconductors》 2025年第1期215-223,共9页
We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters i... We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems. 展开更多
关键词 synaptic transistor dual excitatory channels fast-switching plasticity multiplexed neurotransmission
在线阅读 下载PDF
A dynamic crossover with possibly universal dynamic signatures in simple glass-forming liquids
7
作者 Yiming Zheng Mingyu Zhu +2 位作者 Licun Fu Pengfei Guan Lijin Wang 《Chinese Physics B》 2025年第11期180-185,共6页
On approaching the glass transition,the structural relaxation of glass-forming liquids slows down drastically,along with a significant growth of dynamic heterogeneity.Recent studies have achieved substantial advanceme... On approaching the glass transition,the structural relaxation of glass-forming liquids slows down drastically,along with a significant growth of dynamic heterogeneity.Recent studies have achieved substantial advancements in elucidating the quantitative correlations between structural relaxation and dynamic heterogeneity.Here,we present the discovery of a novel dynamic crossover with possibly universal dynamic signatures by investigating the relationship between structural relaxation and dynamic heterogeneity.Specifically,the structural relaxation time at the dynamic crossoverτ_(c)is equal to the time scale for the maximum non-Gaussian parameter,which could serve as a quantitative characterization of dynamic heterogeneity.The degree of dynamic heterogeneity at the crossover is approximately equivalent across all investigated glass-forming liquids,leading to a scaling collapse between structural relaxation and dynamic heterogeneity.Moreover,the mean squared displacement at the structural relaxation time is nearly constant across different temperatures as long as the structural relaxation time does not exceedτ_(c).We further observe that the temperature at the dynamic crossover is lower than the onset temperature of slow dynamics.Our findings thus suggest the existence of a novel dynamic crossover with possibly universal dynamic signatures in glass-forming liquids,which merits in-depth investigations. 展开更多
关键词 glass-forming liquids dynamic heterogeneity structural relaxation glassy dynamics
原文传递
Dynamic modulation of Pt 5d valence electrons by single-atom Cu for boosted alkaline hydrogen evolution catalysis
8
作者 Pengfei Wu Yuzhuo Sun +7 位作者 Wenjing Miao Zhaoqin Chu Jingtian Hu Yukun Gao Penggang Yin Wenxing Chen Lingling Guo Degao Wang 《Journal of Energy Chemistry》 2025年第11期372-381,I0010,共11页
Developing efficient and durable alkaline hydrogen evolution reaction(HER)catalysts is crucial for realizing high-performance,practical anion exchange membrane water electrolyzer(AEMWE)operating at ampere-level curren... Developing efficient and durable alkaline hydrogen evolution reaction(HER)catalysts is crucial for realizing high-performance,practical anion exchange membrane water electrolyzer(AEMWE)operating at ampere-level current densities.Although atomically dispersed Platinum(Pt)catalysts offer significant potential for enhancing atom utilization,their HER performance and durability are limited by the inflexibility in valence electron transfer between Pt and the support.In this study,we utilize asymmetrically single-atom copper(Cu)with tunable valence states as a valence electron reservoir(VER)to dynamically regulate the Pt 5d valence states,achieving efficient alkaline HER.In situ synchrotron radiation and theoretical calculations demonstrate that the dynamic evolution of the Pt 5d valence electron configuration optimizes the adsorption strengths of reaction intermediates.Meanwhile,single-atom Cu accelerates the rate-limiting water dissociation,and Pt facilitates subsequent^(*)H coupling.The catalyst requires only 23.5 and 177.2 mV overpotentials to achieve current densities of 10 and 500 mA cm^(-2)in 1 M KOH.Notably,the PtCu/NC exhibits a~57%lower hydrogen evolution barrier than Pt/NC.Moreover,the PtCu/NC-based AEMWE operates for over 600 h at an industrially relevant current density of 500 mA cm^(-2). 展开更多
关键词 Metal-atom catalyst Dynamic control In-situ synchrotron radiation Alkaline hydrogen evolution
在线阅读 下载PDF
Engineering g-C_(3)N_(4)based materials for advanced photocatalysis:Recent advances 被引量:5
9
作者 Xin-Lian Song Lei Chen +2 位作者 Li-Jiao Gao Jin-Tao Ren Zhong-Yong Yuan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期166-197,共32页
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti... Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications. 展开更多
关键词 Graphitic carbon nitride g-C_(3)N_(4) Design strategies PHOTOCATALYSIS PHOTOCATALYSTS Reaction mechanism
在线阅读 下载PDF
Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery 被引量:4
10
作者 Hao-Yu Wang Lei Wang +3 位作者 Jin-Tao Ren Wen-Wen Tian Ming-Lei Sun Zhong-Yong Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期492-504,共13页
Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen ... Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production.Rational design of bifunctional electrocatalysts,which can simultaneously accelerate hydrogen evolution reaction(HER)/hydrazine oxidation reaction(HzOR)kinetics,is the key step.Herein,we demonstrate the development of ultrathin P/Fe co-doped NiSe_(2) nanosheets supported on modified Ni foam(P/Fe-NiSe_(2)) synthesized through a facile electrodeposition process and subsequent heat treatment.Based on electrochemical measurements,characterizations,and density functional theory calculations,a favorable“2+2”reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated.P/Fe-NiSe_(2) thus yields an impressive electrocatalytic performance,delivering a high current density of 100 mA cm^(−2) with potentials of−168 and 200 mV for HER and HzOR,respectively.Additionally,P/Fe-NiSe_(2) can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine(Zn-Hz)battery,making it promising for practical application. 展开更多
关键词 Water electrolysis Hydrogen production Hydrazine oxidation Bifunctional electrocatalyst Heteroatom doping
在线阅读 下载PDF
Optimized electrochemical ammonia production:From metal-N_(2)/NO_(x) batteries to aqueous metal-NO_(x)^(–) batteries
11
作者 Feng-Xiao Yan Hao-Yu Wang +2 位作者 Yi Feng Hao Wang Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期541-555,共15页
Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe ... Ammonia plays a crucial role in contemporary society,impacting medicine,agriculture,and the chemical industry.The conventional industrial synthesis of NH_(3) through the Haber-Bosch technique,carried out under severe reaction conditions,leads to substantial energy consumption and environmental pollution.It is thus imperative for NH_(3) synthesis methods to be investigated under more favorable conditions.Synthesis of ammonia by electrocatalysis can effectively reduce the environmental damage and other urgent problems,which is a promising solution.Metal-nitrogen series batteries(M-N batteries),such as metal-nitrogen gas batteries,metal-nitrogen oxide batteries and metal-oxynitride batteries have been regarded recently as an exemplar of concurrent NH_(3) synthesis and energy production.Nonetheless,the large-scale application of these batteries is still limited by numerous challenges are currently existing in building high-efficiency M-N batteries,including poor Faradic efficiency and low NH_(3) yield.Therefore,a comprehensive overview of M-N batteries is offered,specifically focusing on advanced strategies for designing highly efficient cathode catalysts in anticipation of future developments.The metal anodes,cathodic electro-reduction reactions,and design principles are encompassed in the discussion,offering detailed insights to enhance understanding.Mechanisms,feasibility analyses,technoeconomic assessments,device combinations,and comparative evaluations are delved into in the review,contributing to a thorough comprehension of diverse systems and their application potential.Perspectives and opportunities for future research directions are also delineated. 展开更多
关键词 Metal-N_(2)batteries Metal-NO_(x)^(-)batteries Energy storage Ammonia production Electrocatalysts
在线阅读 下载PDF
Enhancing the singlet oxygen capture and release rate of metal-organic frameworks through interpenetration tuning
12
作者 Jing Hao Feifan Lang +6 位作者 Liqin Hao Yi Yang Lulu Zhang Hao Zhang Quan-Wen Li Jiandong Pang Xian-He Bu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期476-480,共5页
Recognized as one of the important active species involved in varicus ractions,singlet oxygen(^(1)O_(2))shows potential applications in chemical.blological,and environmental related fields.However,the con-trolled capt... Recognized as one of the important active species involved in varicus ractions,singlet oxygen(^(1)O_(2))shows potential applications in chemical.blological,and environmental related fields.However,the con-trolled capture and release of^(1)O_(2)are still facing huge challenges due to its short lifetime and high re-activity.Herein,a framework-interpenetration tuning strategy was applied on a metal-organic framework(MOF)that aiming to improve the capture and release rate of O.The porosity of the MOF was remark-ably enhanced with the structural evolution from seven-fold(termed NKM-181)to six-fold interpene-tration(termed NKM-182),and the active anthracene sites became much mare accessible.Such drastic process can be achieved as simple as exchanging the primitive MOF in selected solvent and occurred surprisingly as single-crystal to single-crystal transformation.Also,additionally owing to the unblocked regular channels,NKM-182 shown significantly improved^(1)O_(2)trapping and releasing rates compared to strates an unprecedented regulation of^(1)O_(2)capture and release that of in NKM-181.This work demon process,along with achieving the highest^(1)O_(2)capture and release rate among reported porous materi-als.furthermore.the obtalned endoperoxides with^(1)O_(2)loaded(termed EPO-NKM-181 and EPO-NKM-182)can be used as a high efficiency smart material for anti-fake application. 展开更多
关键词 Metal-organic framework Singlet oxygen capture and release Regulation Single-crystal to single-crystal TRANSFORMATION Anti-fake application
原文传递
High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing
13
作者 Shangda Qu Yiming Yuan +1 位作者 Xu Ye Wentao Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期234-238,共5页
Artificial synapses are essential building blocks for neuromorphic electronics.Here,solid polymer electrolyte-gated artificial synapses(EGASs)were fabricated using ITO fibers as channels,which possess an ultra-high se... Artificial synapses are essential building blocks for neuromorphic electronics.Here,solid polymer electrolyte-gated artificial synapses(EGASs)were fabricated using ITO fibers as channels,which possess an ultra-high sensitivity of 5 m V and a long-term memory time exceeding 3 min.Notably,digitally printed ITO-fiber arrays exhibit an ultra-high transmittance of approximately 99.67%.Biological synaptic plasticity,such as excitatory postsynaptic current,paired-pulse facilitation,spike frequency-dependent plasticity,and synaptic potentiation and depression,were successfully mimicked using the EGASs.Based on the synaptic properties of the EGASs,an artificial neural network was constructed to perform supervised learning using the Fashion-MNIST dataset,achieving high pattern recognition rate(82.39%)due to the linear and symmetric synaptic plasticity.This work provides insights into high-sensitivity artificial synapses for future neuromorphic computing. 展开更多
关键词 Solid polymer electrolyte ITO fibers Artificial synapses Synaptic plasticity Neuromorphic computing
原文传递
Flexible organic artificial synapse with ultrashort-term plasticity for tunable time-frequency signal processing
14
作者 Yao Ni Lu Liu +2 位作者 Jiulong Feng Lu Yang Wentao Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期236-240,共5页
A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film... A flexible organic artificial synapse(OAS)for tunable time-frequency signal processing was fabricated using a tri-blend film that had been fabricated using a one-step solution method.When combined with a chitosan film,this OAS can achieve an ultrashort-term retention time of only 49 ms for instant electricalcomputing applications;this is the shortest retention time yet achieved by a two-terminal artificial synapse.An array of these flexible OASs can withstand a high bending strain of 5%for 10^(4) cycles;this deformation endurance is a new record.The OAS was also sensitive to the number and frequency of electrical inputs;a tunable cut-off frequency enables dynamic filtering for use in image detail enhancement.This work provides a new resource for development of future neuromorphic computing devices。 展开更多
关键词 Flexible organic artificial synapse Tri-blend film Time-frequency signal processing Ultrashort-term plasticity Dynamic filtering
原文传递
Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
15
作者 董陈潇 杨哲森 +1 位作者 曾进峰 胡江平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期132-141,共10页
The anomalous non-Hermitian dynamical phenomenon with the non-Hermitian skin effect(NHSE)attracts wide attention due to its novel physics and promising applications.Here,we propose a new type of non-unitary discrete-t... The anomalous non-Hermitian dynamical phenomenon with the non-Hermitian skin effect(NHSE)attracts wide attention due to its novel physics and promising applications.Here,we propose a new type of non-unitary discrete-time quantum walk system demonstrating the NHSE and anomalous non-Hermitian dynamical phenomena,including the dynamical chiral phenomenon,the funneling phenomenon on the domain wall,and the anomalous reflection on the phase impurity.Furthermore,we design the quantum circuit experiments of these quantum walk systems and numerically simulate them with quantum noises to verify the robustness of the non-Hermitian dynamical phenomenon on the noisy intermediate-scale quantum(NISQ)devices.Our work paves the way for implementing the non-Hermitian dynamical phenomenon on the quantum circuit. 展开更多
关键词 spectral degeneracy splitting discrete-time quantum walk quantum circuit non-Hermitian skin effect
原文传递
Activating weak electrophiles to break nonpolar C-C bonds with electric fields
16
作者 Xueyan Zhao Adila Adijiang Dong Xiang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期1-2,共2页
Electrophilic aromatic substitution(EAS)is a vital chemical reaction in organic chemistry that involves replacing substituent on an aromatic ring by an electrophile.Despite its widespread industrial applications in th... Electrophilic aromatic substitution(EAS)is a vital chemical reaction in organic chemistry that involves replacing substituent on an aromatic ring by an electrophile.Despite its widespread industrial applications in the production of substituted aromatic compounds,the reaction typically requires harsh reaction conditions,such as high temperature and potent Lewis acid catalysts,to activate the electrophile due to the stability of the aromatic ring[1].Recently,a study published by Yaping Zang and colleagues in Nature Communications demonstrates the use of an electric field as a catalyst to regulate EAS reactivity,replacing conventional chemical reagents.The research team discovered that an electric field could activate an otherwise unreactive electrophile and break inert nonpolar C-C bonds under mild conditions.These unprecedented results showcase the potential for broadening the scope of EAS reactions via electric field catalysis. 展开更多
关键词 BONDS AROMATIC polar
原文传递
Auxiliary guidance manufacture and revealing potential mechanism of perovskite solar cell using machine learning
17
作者 Quan Zhang Jianqi Wang Guohua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期146-157,I0004,共13页
To promote the development of global carbon neutrality,perovskite solar cells(PSCs)have become a research hotspot in related fields.How to obtain PSCs with expected performance and explore the potential factors affect... To promote the development of global carbon neutrality,perovskite solar cells(PSCs)have become a research hotspot in related fields.How to obtain PSCs with expected performance and explore the potential factors affecting device performance are the research priorities in related fields.Although some classical computational methods can facilitate material development,they typically require complex mathematical approximations and manual feature screening processes,which have certain subjectivity and one-sidedness,limiting the performance of the model.In order to alleviate the above challenges,this paper proposes a machine learning(ML)model based on neural networks.The model can assist both PSCs design and analysis of their potential mechanism,demonstrating enhanced and comprehensive auxiliary capabilities.To make the model have higher feasibility and fit the real experimental process more closely,this paper collects the corresponding real experimental data from numerous research papers to develop the model.Compared with other classical ML methods,the proposed model achieved better overall performance.Regarding analysis of underlying mechanism,the relevant laws explored by the model are consistent with the actual experiment results of existing articles.The model exhibits great potential to discover complex laws that are difficult for humans to discover directly.In addition,we also fabricated PSCs to verify the guidance ability of the model in this paper for real experiments.Eventually,the model achieved acceptable results.This work provides new insights into integrating ML methods and PSC design techniques,as well as bridging photovoltaic power generation technology and other fields. 展开更多
关键词 Machine learning Carbon neutrality PHOTOVOLTAIC Auxiliary experiment design
在线阅读 下载PDF
Gate Tunable Labyrinth Domain Structures in a van der Waals Itinerant Ferromagnet Cr_(7)Te_(8)
18
作者 Kui Meng Zeya Li +11 位作者 Yicheng Shen Xiangyu Bi Junhao Rao Yuting Qian Zhansheng Gao Peng Chen Caiyu Qiu Feng Qin Jinxiong Wu Feng Luo Junwei Huang Hongtao Yuan 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第9期122-132,共11页
Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnet... Manipulating magnetic domain structure plays a key role in advanced spintronics devices.Theoretical rationale is that the labyrinthine domain structure,normally appearing in ferromagnetic thin films with strong magnetic anisotropy,shows a great potential to increase data storage density for designing magnetic nonvolatile memory and logic devices.However,an electrical control of labyrinthine domain structure remains elusive.Here,we demonstrate the gate-driven evolution of labyrinthine domain structures in an itinerant ferromagnet Cr_(7)Te_(8).By combining electric transport measurements and micromagnetic finite difference simulations,we find that the hysteresis loop of anomalous Hall effect in Cr_(7)Te_(8)samples shows distinct features corresponding to the generation of labyrinthine domain structures.The labyrinthine domain structures are found to be electrically tunable via Li-electrolyte gating,and such gate-driven evolution in Cr_(7)Te_(8)originates from the reduction of the magnetic anisotropic energy with gating,revealed by our micromagnetic simulations.Our results on the gate control of anomalous Hall effect in an itinerant magnetic material provide an opportunity to understand the formation and evolution of labyrinthine domain structures,paving a new route towards electric-field driven spintronics. 展开更多
关键词 RATIONAL ELECTROLYTE FERROMAGNETIC
原文传递
Remediation of characteristic contaminants in groundwater of chemical industrial by the activation of PMS:Recent developments and challenges-a mini-review
19
作者 Yingnan Duan Jinyu Liu +3 位作者 Qian Liu Tianhao Li Hexiang Zhao Zhurui Shen 《Chinese Chemical Letters》 2026年第1期177-185,共9页
Groundwater is a key part of the terrestrial ecosystem,but it is vulnerable to pollution in the context of chemical industry development.Treating contaminated groundwater is challenging due to its stable water quality... Groundwater is a key part of the terrestrial ecosystem,but it is vulnerable to pollution in the context of chemical industry development.Treating contaminated groundwater is challenging due to its stable water quality,hidden contamination,and complex treatment requirements.Current research focuses on advanced treatment technologies,among which the advanced oxidation process(AOPs) of peroxomonosulfate(PMS) has great potential.Although there are many reviews of PMS-based AOP,most of them focus on surface water.This review aims to explore the activation reaction of PMS to groundwater by in-situ chemical oxidation(ISCO) technology,further study the reaction mechanism,compare the treatment effect of characteristic pollutants in the groundwater of the chemical industry park,propose new activation methods and catalyst selection,and provide guidance for future groundwater treatment research. 展开更多
关键词 Advanced oxidation processes(AOPs) In-situ chemical oxidation PMS Groundwater contamination Characteristic pollutants
原文传递
Super-Hydrophilic/Aerophobic Co(OH)_(2)/NiFe Layered Double Hydroxide Heterostructures with Moderate Work Function Difference for Large-Current-Density Electrochemical Ammonia Synthesis
20
作者 Yi Feng Jin-Tao Ren +5 位作者 Yue-Xin Song Wen-Wen Tian Hao-Yu Wang Lei Wang Ming-Lei Sun Zhong-Yong Yuan 《CCS Chemistry》 2025年第5期1344-1358,共15页
Developing NO_(2)−reduction reaction(NO_(2)−RR)and oxygen evolution reaction(OER)bifunctional electrocatalysts at large current densities is crucial for decreasing energy consumption of electrocatalytic NH3 production... Developing NO_(2)−reduction reaction(NO_(2)−RR)and oxygen evolution reaction(OER)bifunctional electrocatalysts at large current densities is crucial for decreasing energy consumption of electrocatalytic NH3 production and booming sustainable nitrogenbased economy.In addition to increasing active sites of catalysts,bubble adhesion deserves more attention during high-current electrolysis,which can deteriorate mass transfer and block active sites in gas-involving environments.Herein,super-hydrophilic/aerophobic cobalt-nickel-iron layered double hydroxide[Co(OH)_(2)/NiFe LDH]core-shell heterostructures were developed as efficient NO_(2)−RR and OER electrocatalysts to optimize surface tension due to self-pumping effect and modify active hydrogen adsorption behavior owing to moderate work function difference between Co(OH)_(2)and NiFe LDH.The fabricated Co(OH)_(2)/NiFe LDH exhibited excellent NO_(2)−RR activity(yield:50 mg h^(−1)cm^(−2);FE:91%at−500 mA cm^(−2))and impressive OER behavior(η1000:340 mV)accompanied by remarkable application potential for renewable energy-driven two-electrode system to produce NH3.This effort revealed important insights into the development of electrodes for reaching cost-effective electrocatalytic ammonia production at large current densities. 展开更多
关键词 heterostructure work function difference bifunctional electrocatalyst high current density mass transfer
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部