Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands.This technology establishes direct pathways for electricity-to-chemical conversion while signific...Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands.This technology establishes direct pathways for electricity-to-chemical conversion while significantly reducing the carbon footprint of chemical manufacturing.It simultaneously optimizes chemical energy storage and grid management,offering sustainable solutions for renewable energy utilization and overcoming geographical constraints in energy distribution.As a critical nexus between renewable energy and green chemistry,electrochemical synthesis serves dual roles in energy transformation and chemical production,emerging as a vital component in developing carbon-neutral circular economies.Focusing on key small molecules(H_(2)O,CO_(2),N_(2),O_(2)),this comment examines fundamental scientific challenges and practical barriers in electrocatalytic conversion processes,bridging laboratory innovations with industrial-scale implementation.展开更多
Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have g...Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrog...Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported.In this work,transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts,ranging from single atoms to sub-nanometer dimensions,are explored for hydrogen evolution reaction(HER).The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes.The optimized sample shows low overpotentials of 28,65,and 154 mV at a current densities of 10,100,and 500 m A cm^(-2),a small Tafel slope of 29 m V dec^(-1),a high mass activity of 1203 mA mgPt^(-1)and an excellent turnover frequency of 6.1 s^(-1)in the acidic electrolyte.Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites,increased surface functional groups,faster charge transfer dynamics,and stronger electronic interaction between Pt and MXene,resulting in optimized hydrogen absorption/desorption toward better HER.This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.展开更多
Noble metal-loaded layered hydroxides exhibit high efficiency in electrocatalyzing water splitting.However,their widespread use as bifunctional electrocatalysts is hindered by low metal loading,inefficient yield,and c...Noble metal-loaded layered hydroxides exhibit high efficiency in electrocatalyzing water splitting.However,their widespread use as bifunctional electrocatalysts is hindered by low metal loading,inefficient yield,and complex synthesis processes.In this work,platinum atoms were anchored onto nickel-iron layered double hydroxide/carbon nanotube(LDH/CNT)hybrid electrocatalysts by using a straightforward milling technique with K_(2)Pt Cl_(6)·6H_(2)O as the Pt source.By adjusting the Pt-to-Fe ratio to 1/2 and 1/10,excellent electrocatalysts—Pt_(1/6)-Ni_(2/3)Fe_(1/3)-LDH/CNT and Pt_(1/30)-Ni_(2/3)Fe_(1/3)-LDH/CNT—were achieved with superior performance in hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),outperforming the corresponding commercial Pt/C(20 wt%)and Ru O_(2)electrocatalysts.The enhanced electrochemical performance is attributed to the modification of Pt's electronic structure,which exhibits electron-rich states for HER and electrondeficient states for OER,significantly boosting Pt's electrochemical activity.Furthermore,the simple milling technology for controlling Pt loading offers a promising approach for scaling up the production of electrocatalysts.展开更多
This article presents a human fall detection system that addresses two critical challenges:privacy preservation and detection accuracy.We propose a comprehensive framework that integrates state-of-the-art machine lear...This article presents a human fall detection system that addresses two critical challenges:privacy preservation and detection accuracy.We propose a comprehensive framework that integrates state-of-the-art machine learning models,multimodal data fusion,federated learning(FL),and Karush-Kuhn-Tucker(KKT)-based resource optimization.The systemfuses data fromwearable sensors and cameras using Gramian Angular Field(GAF)encoding to capture rich spatial-temporal features.To protect sensitive data,we adopt a privacy-preserving FL setup,where model training occurs locally on client devices without transferring raw data.A custom convolutional neural network(CNN)is designed to extract robust features from the fused multimodal inputs under FL constraints.To further improve efficiency,a KKT-based optimization strategy is employed to allocate computational tasks based on device capacity.Evaluated on the UP-Fall dataset,the proposed system achieves 91%accuracy,demonstrating its effectiveness in detecting human falls while ensuring data privacy and resource efficiency.This work contributes to safer,scalable,and real-world-applicable fall detection for elderly care.展开更多
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ...Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.展开更多
Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.The...Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.展开更多
With the exponential growth of portable electronic devices and wearable technologies,batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety a...With the exponential growth of portable electronic devices and wearable technologies,batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety and exceptional durability.Inspired by the self-repair mechanism observed in natural systems,a self-healing strategy shows great application potential in enabling batteries to resist external physical and chemical damage.In this review,we provide a detailed exploration of the application of self-healing materials in battery components,including electrodes,electrolytes,and encapsulation layers.We also analyze the advantages and limitations of various self-healing mechanisms,highlighting their roles in optimizing battery performance.By presenting a comprehensive synthesis of existing research,the potential pathways for advancing the development of self-healing batteries are identified,as well as the key challenges and opportunities within this field.This review aims to promote the practical integration of self-healing batteries in smart and flexible electronic devices,paving the way for safer,more reliable,and long-lasting energy storage systems.展开更多
Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infr...Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infrared regions.At the application level,it is required to have a certain temperature monitoring capability in the near-infrared region II window to enhance the tissue penetration depth.Here,two kinds of YOFs:Er^(3+),Yb^(3+)were prepared by co-precipitation and hydrothermal method,and the luminescence was enhanced by ion doping.An Er^(3+)-based ratiometric nanothermometer of ^(4)F_(9∕2)→4 I_(15∕2)(672nm,upconversion luminescence)to ^(4)I _(13∕2)→^(4) I_(15∕2)(1580nm/1566nm,NIR II downshifting luminescence)were designed with the Stark energy level.When doped with 2%Zn^(2+),the relative temperature sensitivity of YOF prepared by co-precipitation method was improved from 0.30%℃^(-1)(30℃)to 0.59%℃^(-1)(30℃),expanding its use as a temperature monitoring device possibility.The temperature sensitivity of YOF prepared by hydrothermal method was 1.01%℃^(-1)(30℃).Finally,the NIR II luminescence of the prepared nanothermometer was used as a control for temperature monitoring of heating sites in mice.The results showed that it can distinguish heating site from control site and no significant cytotoxicity or damage to the tissues was revealed,indicating its broad prospects in the biomedical field and other temperature monitoring scenarios in the future.展开更多
Electrocatalytic CO_(2)-to-CO conversion is crucial for advancing sustainable processes,and providing essential feedstocks for the chemical industry.Cobalt phthalocyanine(CoPc)is a well-established molecular catalyst ...Electrocatalytic CO_(2)-to-CO conversion is crucial for advancing sustainable processes,and providing essential feedstocks for the chemical industry.Cobalt phthalocyanine(CoPc)is a well-established molecular catalyst for this conversion;however,maintaining high selectivity at industrially relevant current densities remains a significant challenge.Herein,we present a Co–N_(5)local structure anchored on nitrogen-doped carbon nanotubes through axial nitrogen coordination engineering to CoPc(CoPc/N-CNTs).The catalyst demonstrates near-unity CO selectivity and a high CO turnover frequency,peaking at 19.2 s^(−1)across a wide range of overpotentials.In flow cell tests,CoPc/N-CNTs achieve a CO Faradaic efficiency exceeding 95%at a current density of−800 mA cm^(−2).When integrated into a membrane electrode assembly,it maintained over 90%CO Faradaic efficiency at an industrial-scale current of−5 A for up to 20 h.Mechanistic studies revealed that Co–N_(5)active sites accelerate*COOH formation and inhibit deeper*CO reduction to CH_(3)OH while reducing HER activity by lowering H_(2)O surface coverage.These findings offer a delicate catalyst design that enables the efficient and sustained conversion of CO_(2)to CO.展开更多
Weeds have a negative impact on agricultural production by competing with cultivated crops for resources and fostering conditions conducive to disease and insect pest dissemination.Hence,optimal weed management is of ...Weeds have a negative impact on agricultural production by competing with cultivated crops for resources and fostering conditions conducive to disease and insect pest dissemination.Hence,optimal weed management is of paramount importance for sustainable agricultural.In this study,the ability of four distinct green manure species to suppress weeds was determined in a field experiment conducted in Chongqing,Southwest China.After cultivating the green manure species,the weed density and diversity were monitored over the following year.The findings highlight a notable trend in the suppressive ability of green manures,with increased suppression observed from November to March,an optimal level observed from March to May,and a gradual decline observed thereafter.Poaceae(Lolium perenne L.)demonstrated the highest efficacy in suppressing weeds.The meta-analysis underscore the exceptional suppressive effects of poaceous green manures on weed as well and prove sustained planting for three or more consecutive years yielded superior weed suppression outcomes.Green manure had the most prominent inhibitory effect on poaceae weeds,followed by Polygonaceae and Caryophyllaceae.The field experiment also investigated the effect of green manures on weed community composition,they increased in the proportion of perennial weeds within these communities.This study offers valuable insights that can guide policymakers,agricultural experts,and farmers in devising effective weed management strategies.By highlighting the potential benefits of green manures and unraveling their nuanced impact,this study contributes to the arsenal of sustainable agricultural practices.展开更多
Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications.As a new strategy for fabricating bending actuators,constructing defect dipole concentration gradient has emerged as an eff...Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications.As a new strategy for fabricating bending actuators,constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement,yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization.Herein we propose a new strategy to fabricate barium-doped(K,Na)NbO_(3) piezoelectric bending actuators with controllable gradient distribution of highly stable<110>-oriented(V_(K/Na)'-V_(O)··)defect dipoles,achieving a centimeter-level displacement performance of 1.2 cm under±200 V sinusoidal AC excitations.Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction,confirming that the defect dipole concentration gradient,rather than oxygen vacancy migration drives the large bending deformation.Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of<110>-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output.We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications,providing new insights into the design of piezoceramic actuators.展开更多
Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reacti...Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reaction(HER),which remains obscure and requires deep probing.Herein,we demonstrate the first investigation of interfacial water behavior on the surface of a series of sodium tungsten bronzes(Na_(x)WO_(3),0_(x)WO_(3)/electrolyte interface.Our integrated studies indicate that the Na ions significantly enrich the electronic state of WO_(6)octahedrons in Na_(x)WO_(3),which leads to the regulated electronic and atomic structures,endowing Na_(x)WO_(3)with disordered interfacial water network containing more isolated H_(3)O^(+)and subsequently moderate H^(*)adsorption to speed the Volmer step at the Na_(x)WO_(3)surface,thus boosting the HER.Consequently,the intrinsic HER activities achieved on those Na_(x)WO_(3)are tens of times higher than those on WO_(3).Particularly,it is found that Na concentration x=0.69 endows Na_(x)WO_(3)with the highest intrinsic HER activity,and the resultant Na_(0.69)WO_(3)with a unique porous octahedral structure exhibits a low overpotential of only 64 mV at current density of 10 mA cm^(-2)in acidic electrolyte.This study provides the first insight into the cation-dependent interfacial water behavior induced by the cations within the catalyst and establishes the interfacial water-activity relationship of HER,thus allowing for the design of a more advanced catalyst with efficient interfacial structu res towa rds HER.展开更多
Batteries play a crucial role in the storage and application of sustainable energy,yet their inherent safety risks are non-negligible.Traditional monitoring methods often suffer from high costs,time consumption,and li...Batteries play a crucial role in the storage and application of sustainable energy,yet their inherent safety risks are non-negligible.Traditional monitoring methods often suffer from high costs,time consumption,and limited scalability,making it increasingly difficult to meet the evolving demands of modern society.In this context,recent advancements in machine learning technology have emerged as a promising solution for predicting and monitoring battery states,offering innovative approaches to battery management systems(BMS).By transforming raw operational data into actionable insights,machine learning has shifted the paradigm from reactive to predictive battery safety management,significantly enhancing system reliability and risk mitigation capabilities.This review delves into the implementation of machine learning in battery state prediction,including dataset selection,feature extraction,and model training.It also highlights the latest progress of these models in key applications such as state of health(SOH),state of charge(SOC),thermal runaway warning,fault detection,and remaining useful life(RUL).Finally,we critically examined the challenges and opportunities associated with leveraging machine learning to improve battery safety and performance,providing a comprehensive perspective for future research in this rapidly advancing field.展开更多
The synthesized molecular clusters featuring the cubic[4Fe–4S]core have been studied for several decades,as they serve as true analogs of the active components in ferritin within biological systems.Such a model clust...The synthesized molecular clusters featuring the cubic[4Fe–4S]core have been studied for several decades,as they serve as true analogs of the active components in ferritin within biological systems.Such a model cluster has been extensively investigated in various fields,including structural modulation,catalysis,and self-assembly under laboratory conditions,with the aim of gaining an in-depth understanding of their roles in biological functions.Herein,we revisited three well-known[Fe_(4)S_(4)(SR)_(4)]^(2–)molecules,namely[Me_(4)N]_(2)[Fe_(4)S_(4)(SR)_(4)](R=o-MBT,m-MBT,p-MBT),and successfully established their single crystal structures that remain unknown prior to this work.Interestingly,it is revealed that the position of the substituent methyl group has an obvious steric effect on the arrangement of the ligand around the[4Fe–4S]core,which further influences their overall packing patterns in single crystals.In addition,this work unveils two new structure transformation behaviors for the[Fe_(4)S_(4)(SR)_(4)]^(2–)system:i)the monomeric[Fe(SR)_(4)]^(2–)and tetrameric[Fe_(4)S_(4)(SR)_(4)]^(2–)can be interconverted,and ii)[Fe_(4)S_(4)(SR)_(4)]^(2–)can be transferred into an intriguing iron-oxide complex Na_(2)Fe_(6)O(OMe)_(18)·6MeOH in a well-controlled oxidizing environment.展开更多
Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more ...Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions.展开更多
Phosphorus(P)is crucial for crop growth.However,in waters,P is considered as contaminant due to its role in causing eutrophication and algae blooms.Therefore,recovering P from wastewater is essential for sustainable P...Phosphorus(P)is crucial for crop growth.However,in waters,P is considered as contaminant due to its role in causing eutrophication and algae blooms.Therefore,recovering P from wastewater is essential for sustainable P management.This study investigated the removal of P from aqueous solutions using bioinspired poly(ethylenimine)-poly(acrylamideco-acrylic acid)(PEI-PAMcoAA)coacervates.In detail,we investigated various parameters affecting P removal,including the ratio of PEI to PAMcoAA(ranging from 1:2 to 3:1,stoichiometry ratio of NH_(2) to COOH),pH(5.0-8.0)of P-containing solutions,initial P concentration(0.05-5 mmol/L),and the addition of calcium(Ca,0.1-5 mmol/L).We found that increasing the PEI:PAMcoAA ratio from1:2 to 3:1 significantly enhanced P removal efficiency,increasing from 47.21%to 95.44%.Under neutral pH conditions without calcium(Ca),PEI-PAMcoAA coacervates demonstrated optimal P removal capabilities(achieving an efficiency of 77.96%)through electrostatic adsorption.In contrast,the addition of Ca under alkaline conditions markedly improved P removal efficiency,increasing it from 64.16%to 82.42%.Detailed analyses of P within the coacervates indicated that Ca facilitates P precipitation and provides additional binding sites.These findings demonstrated that PEI-(Ca)-PAMcoAA coacervates show promise for efficiently removing P,particularly at low P concentrations.After the Premoval,the immobilized P can potentially be reused directly,as P able to be released from the reacted products.Therefore,the reacted coacervates could serve as a non-toxic fertilizer.Given its simplicity,high efficiency,and environmental friendliness,P removal based on bioinspired coacervates represents a low-hanging fruit in the pursuit of sustainable P management.展开更多
文摘Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands.This technology establishes direct pathways for electricity-to-chemical conversion while significantly reducing the carbon footprint of chemical manufacturing.It simultaneously optimizes chemical energy storage and grid management,offering sustainable solutions for renewable energy utilization and overcoming geographical constraints in energy distribution.As a critical nexus between renewable energy and green chemistry,electrochemical synthesis serves dual roles in energy transformation and chemical production,emerging as a vital component in developing carbon-neutral circular economies.Focusing on key small molecules(H_(2)O,CO_(2),N_(2),O_(2)),this comment examines fundamental scientific challenges and practical barriers in electrocatalytic conversion processes,bridging laboratory innovations with industrial-scale implementation.
基金supported by National Natural Science Foundation of China(Grant Nos.52025055,52375576,52350349)Key Research and Development Program of Shaanxi(Program No.2022GXLH-01-12)+2 种基金Joint Fund of Ministry of Education for Equipment Pre-research(No.8091B03012304)Aeronautical Science Foundation of China(No.2022004607001)the Fundamental Research Funds for the Central Universities(No.xtr072024031).
文摘Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金the final support of ARC DP220103045the startup support of KFUPMPrince Sultan University for their support。
文摘Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported.In this work,transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts,ranging from single atoms to sub-nanometer dimensions,are explored for hydrogen evolution reaction(HER).The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes.The optimized sample shows low overpotentials of 28,65,and 154 mV at a current densities of 10,100,and 500 m A cm^(-2),a small Tafel slope of 29 m V dec^(-1),a high mass activity of 1203 mA mgPt^(-1)and an excellent turnover frequency of 6.1 s^(-1)in the acidic electrolyte.Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites,increased surface functional groups,faster charge transfer dynamics,and stronger electronic interaction between Pt and MXene,resulting in optimized hydrogen absorption/desorption toward better HER.This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.
基金supported by the Natural Science Foundation of Henan(242300421230)the Young Teacher Fundamental Research Cultivation Program of Zhengzhou University(JC23557030)the National Natural Science Foundation of China(U21A20281 and 22208322)。
文摘Noble metal-loaded layered hydroxides exhibit high efficiency in electrocatalyzing water splitting.However,their widespread use as bifunctional electrocatalysts is hindered by low metal loading,inefficient yield,and complex synthesis processes.In this work,platinum atoms were anchored onto nickel-iron layered double hydroxide/carbon nanotube(LDH/CNT)hybrid electrocatalysts by using a straightforward milling technique with K_(2)Pt Cl_(6)·6H_(2)O as the Pt source.By adjusting the Pt-to-Fe ratio to 1/2 and 1/10,excellent electrocatalysts—Pt_(1/6)-Ni_(2/3)Fe_(1/3)-LDH/CNT and Pt_(1/30)-Ni_(2/3)Fe_(1/3)-LDH/CNT—were achieved with superior performance in hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),outperforming the corresponding commercial Pt/C(20 wt%)and Ru O_(2)electrocatalysts.The enhanced electrochemical performance is attributed to the modification of Pt's electronic structure,which exhibits electron-rich states for HER and electrondeficient states for OER,significantly boosting Pt's electrochemical activity.Furthermore,the simple milling technology for controlling Pt loading offers a promising approach for scaling up the production of electrocatalysts.
基金supported by King Fahd University of Petroleum&Minerals,Dhahran,31261,SaudiArabiaTheauthors at KFUP Macknowledge the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)for the support received under Grant No.INSS2516.
文摘This article presents a human fall detection system that addresses two critical challenges:privacy preservation and detection accuracy.We propose a comprehensive framework that integrates state-of-the-art machine learning models,multimodal data fusion,federated learning(FL),and Karush-Kuhn-Tucker(KKT)-based resource optimization.The systemfuses data fromwearable sensors and cameras using Gramian Angular Field(GAF)encoding to capture rich spatial-temporal features.To protect sensitive data,we adopt a privacy-preserving FL setup,where model training occurs locally on client devices without transferring raw data.A custom convolutional neural network(CNN)is designed to extract robust features from the fused multimodal inputs under FL constraints.To further improve efficiency,a KKT-based optimization strategy is employed to allocate computational tasks based on device capacity.Evaluated on the UP-Fall dataset,the proposed system achieves 91%accuracy,demonstrating its effectiveness in detecting human falls while ensuring data privacy and resource efficiency.This work contributes to safer,scalable,and real-world-applicable fall detection for elderly care.
基金funded by King Fahd University of Petroleum&Minerals,Saudi Arabia under IRC-SES grant#INRE 2217.
文摘Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3603403,2021YFB3600502)the National Natural Science Foundation of China(Grant Nos.62075040,62301150)+3 种基金the Southeast University Interdisciplinary Research Program for Young Scholars(2024FGC1007)the Start-up Research Fund of Southeast University(RF1028623164)the Nanjing Science and Technology Innovation Project for Returned Overseas Talent(4206002302)the Fundamental Research Funds for the Central Universities(2242024K40015).
文摘Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.
基金supported by the National Natural Science Foundation of China(Grant No.22479130)Natural Science Foundation of Henan(Grant No.252300421170)China Postdoctoral Science Foundation(Grant No.2023M743150).
文摘With the exponential growth of portable electronic devices and wearable technologies,batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety and exceptional durability.Inspired by the self-repair mechanism observed in natural systems,a self-healing strategy shows great application potential in enabling batteries to resist external physical and chemical damage.In this review,we provide a detailed exploration of the application of self-healing materials in battery components,including electrodes,electrolytes,and encapsulation layers.We also analyze the advantages and limitations of various self-healing mechanisms,highlighting their roles in optimizing battery performance.By presenting a comprehensive synthesis of existing research,the potential pathways for advancing the development of self-healing batteries are identified,as well as the key challenges and opportunities within this field.This review aims to promote the practical integration of self-healing batteries in smart and flexible electronic devices,paving the way for safer,more reliable,and long-lasting energy storage systems.
基金supported by the Key Research and Development Program of Shaanxi(Program No.2023-YBSF-479)the National Natural Science Foundation of China(NSFC 22075249)the Fundamental Research Funds for the Central Universities.
文摘Rare earth luminescent materials have attracted extensive attention in the biomedical field as noncontact temperature monitoring devices with microscopic resolution due to their properties in the visible and near-infrared regions.At the application level,it is required to have a certain temperature monitoring capability in the near-infrared region II window to enhance the tissue penetration depth.Here,two kinds of YOFs:Er^(3+),Yb^(3+)were prepared by co-precipitation and hydrothermal method,and the luminescence was enhanced by ion doping.An Er^(3+)-based ratiometric nanothermometer of ^(4)F_(9∕2)→4 I_(15∕2)(672nm,upconversion luminescence)to ^(4)I _(13∕2)→^(4) I_(15∕2)(1580nm/1566nm,NIR II downshifting luminescence)were designed with the Stark energy level.When doped with 2%Zn^(2+),the relative temperature sensitivity of YOF prepared by co-precipitation method was improved from 0.30%℃^(-1)(30℃)to 0.59%℃^(-1)(30℃),expanding its use as a temperature monitoring device possibility.The temperature sensitivity of YOF prepared by hydrothermal method was 1.01%℃^(-1)(30℃).Finally,the NIR II luminescence of the prepared nanothermometer was used as a control for temperature monitoring of heating sites in mice.The results showed that it can distinguish heating site from control site and no significant cytotoxicity or damage to the tissues was revealed,indicating its broad prospects in the biomedical field and other temperature monitoring scenarios in the future.
基金the National Key Research and Development Program of China(2022YFA1505700)the Fundamental Research Funds for the Central Universities(ZYGX2022J012)+2 种基金the NSFC(52171201,22278067,22322201,22201272)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(2024ZYD0152)the Natural Science Foundation of Sichuan Province(2025NSFJQ0017,2024NSFSC1107,2024NSFSC1104,2023NSFSC0094)。
文摘Electrocatalytic CO_(2)-to-CO conversion is crucial for advancing sustainable processes,and providing essential feedstocks for the chemical industry.Cobalt phthalocyanine(CoPc)is a well-established molecular catalyst for this conversion;however,maintaining high selectivity at industrially relevant current densities remains a significant challenge.Herein,we present a Co–N_(5)local structure anchored on nitrogen-doped carbon nanotubes through axial nitrogen coordination engineering to CoPc(CoPc/N-CNTs).The catalyst demonstrates near-unity CO selectivity and a high CO turnover frequency,peaking at 19.2 s^(−1)across a wide range of overpotentials.In flow cell tests,CoPc/N-CNTs achieve a CO Faradaic efficiency exceeding 95%at a current density of−800 mA cm^(−2).When integrated into a membrane electrode assembly,it maintained over 90%CO Faradaic efficiency at an industrial-scale current of−5 A for up to 20 h.Mechanistic studies revealed that Co–N_(5)active sites accelerate*COOH formation and inhibit deeper*CO reduction to CH_(3)OH while reducing HER activity by lowering H_(2)O surface coverage.These findings offer a delicate catalyst design that enables the efficient and sustained conversion of CO_(2)to CO.
基金funding from the China Agriculture Research System(CARS-22,Green Manure)the Natural Science Foundation Project from Chongqing Municipal Science and Technology Bureau,China(4322300357)the Green Manure Cultivation Technology Project from Chongqing Agricultural Technology Extension Station。
文摘Weeds have a negative impact on agricultural production by competing with cultivated crops for resources and fostering conditions conducive to disease and insect pest dissemination.Hence,optimal weed management is of paramount importance for sustainable agricultural.In this study,the ability of four distinct green manure species to suppress weeds was determined in a field experiment conducted in Chongqing,Southwest China.After cultivating the green manure species,the weed density and diversity were monitored over the following year.The findings highlight a notable trend in the suppressive ability of green manures,with increased suppression observed from November to March,an optimal level observed from March to May,and a gradual decline observed thereafter.Poaceae(Lolium perenne L.)demonstrated the highest efficacy in suppressing weeds.The meta-analysis underscore the exceptional suppressive effects of poaceous green manures on weed as well and prove sustained planting for three or more consecutive years yielded superior weed suppression outcomes.Green manure had the most prominent inhibitory effect on poaceae weeds,followed by Polygonaceae and Caryophyllaceae.The field experiment also investigated the effect of green manures on weed community composition,they increased in the proportion of perennial weeds within these communities.This study offers valuable insights that can guide policymakers,agricultural experts,and farmers in devising effective weed management strategies.By highlighting the potential benefits of green manures and unraveling their nuanced impact,this study contributes to the arsenal of sustainable agricultural practices.
基金financially supported by the National Natural Science Foundation of China(Nos.62474107 and 52032012)the National Key Research and Development Program of China(Nos.2022YFA1205300 and 2022YFA1205304).
文摘Piezoelectric ceramic bending actuators play a pivotal role in various high-tech applications.As a new strategy for fabricating bending actuators,constructing defect dipole concentration gradient has emerged as an effective strategy for boosting electro-bending displacement,yet achieving reproducibility remains challenging due to the uncontrollable alkali volatilization.Herein we propose a new strategy to fabricate barium-doped(K,Na)NbO_(3) piezoelectric bending actuators with controllable gradient distribution of highly stable<110>-oriented(V_(K/Na)'-V_(O)··)defect dipoles,achieving a centimeter-level displacement performance of 1.2 cm under±200 V sinusoidal AC excitations.Samples with defect gradient design but lower oxygen vacancy content exhibit larger bending displacement and excellent fatigue stability without leakage conduction,confirming that the defect dipole concentration gradient,rather than oxygen vacancy migration drives the large bending deformation.Experimental analysis combined with phase-field simulations uncovers that the delicate concentration design of<110>-oriented defect dipoles within orthorhombic stripe domains plays crucial roles in controllable and stable displacement output.We validate the feasibility of the bending actuators in piezoelectric haptic feedback and piezoelectric micro-pump applications,providing new insights into the design of piezoceramic actuators.
基金financially supported by the National Natural Science Foundation of China(22279069,22179067,22478211 and 22372017)the Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10)。
文摘Understanding the role of cations within the catalysts in the interfacial water behavior at the electrolyte/catalyst interface is of pivotal importance for designing advanced catalysts toward hydrogen evolution reaction(HER),which remains obscure and requires deep probing.Herein,we demonstrate the first investigation of interfacial water behavior on the surface of a series of sodium tungsten bronzes(Na_(x)WO_(3),0_(x)WO_(3)/electrolyte interface.Our integrated studies indicate that the Na ions significantly enrich the electronic state of WO_(6)octahedrons in Na_(x)WO_(3),which leads to the regulated electronic and atomic structures,endowing Na_(x)WO_(3)with disordered interfacial water network containing more isolated H_(3)O^(+)and subsequently moderate H^(*)adsorption to speed the Volmer step at the Na_(x)WO_(3)surface,thus boosting the HER.Consequently,the intrinsic HER activities achieved on those Na_(x)WO_(3)are tens of times higher than those on WO_(3).Particularly,it is found that Na concentration x=0.69 endows Na_(x)WO_(3)with the highest intrinsic HER activity,and the resultant Na_(0.69)WO_(3)with a unique porous octahedral structure exhibits a low overpotential of only 64 mV at current density of 10 mA cm^(-2)in acidic electrolyte.This study provides the first insight into the cation-dependent interfacial water behavior induced by the cations within the catalyst and establishes the interfacial water-activity relationship of HER,thus allowing for the design of a more advanced catalyst with efficient interfacial structu res towa rds HER.
基金supported by the National Key Research and Development Program of China(No.2021YFF0500600)Natural Science Foundation of Henan Province(No.252300421176)+1 种基金National Natural Science Foundation of China(No.22478361 and No.22108256)Frontier Exploration Projects of Longmen Laboratory(No.LMQYTSKT021)。
文摘Batteries play a crucial role in the storage and application of sustainable energy,yet their inherent safety risks are non-negligible.Traditional monitoring methods often suffer from high costs,time consumption,and limited scalability,making it increasingly difficult to meet the evolving demands of modern society.In this context,recent advancements in machine learning technology have emerged as a promising solution for predicting and monitoring battery states,offering innovative approaches to battery management systems(BMS).By transforming raw operational data into actionable insights,machine learning has shifted the paradigm from reactive to predictive battery safety management,significantly enhancing system reliability and risk mitigation capabilities.This review delves into the implementation of machine learning in battery state prediction,including dataset selection,feature extraction,and model training.It also highlights the latest progress of these models in key applications such as state of health(SOH),state of charge(SOC),thermal runaway warning,fault detection,and remaining useful life(RUL).Finally,we critically examined the challenges and opportunities associated with leveraging machine learning to improve battery safety and performance,providing a comprehensive perspective for future research in this rapidly advancing field.
基金supported by the Fundamental Research Funds for the Central Universities(22120240204 and 22120240039)the National Natural Science Foundation of China(22301219,Z.Z.,22101205,H.H.)。
文摘The synthesized molecular clusters featuring the cubic[4Fe–4S]core have been studied for several decades,as they serve as true analogs of the active components in ferritin within biological systems.Such a model cluster has been extensively investigated in various fields,including structural modulation,catalysis,and self-assembly under laboratory conditions,with the aim of gaining an in-depth understanding of their roles in biological functions.Herein,we revisited three well-known[Fe_(4)S_(4)(SR)_(4)]^(2–)molecules,namely[Me_(4)N]_(2)[Fe_(4)S_(4)(SR)_(4)](R=o-MBT,m-MBT,p-MBT),and successfully established their single crystal structures that remain unknown prior to this work.Interestingly,it is revealed that the position of the substituent methyl group has an obvious steric effect on the arrangement of the ligand around the[4Fe–4S]core,which further influences their overall packing patterns in single crystals.In addition,this work unveils two new structure transformation behaviors for the[Fe_(4)S_(4)(SR)_(4)]^(2–)system:i)the monomeric[Fe(SR)_(4)]^(2–)and tetrameric[Fe_(4)S_(4)(SR)_(4)]^(2–)can be interconverted,and ii)[Fe_(4)S_(4)(SR)_(4)]^(2–)can be transferred into an intriguing iron-oxide complex Na_(2)Fe_(6)O(OMe)_(18)·6MeOH in a well-controlled oxidizing environment.
基金financially supported by the National Natural Science Foundation of China(22478211,22179067,22372017)the Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10)。
文摘Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions.
基金supported by the National Key Research and Development Program of China(Nos.2023YFD1900602 and 2023YFD1900605)the Fundamental Research Funds for the Central Universities(No.SWU-KR24036)the Visiting Training Funds for Teachers from Ordinary Undergraduate Colleges and Universities in Shandong Province.
文摘Phosphorus(P)is crucial for crop growth.However,in waters,P is considered as contaminant due to its role in causing eutrophication and algae blooms.Therefore,recovering P from wastewater is essential for sustainable P management.This study investigated the removal of P from aqueous solutions using bioinspired poly(ethylenimine)-poly(acrylamideco-acrylic acid)(PEI-PAMcoAA)coacervates.In detail,we investigated various parameters affecting P removal,including the ratio of PEI to PAMcoAA(ranging from 1:2 to 3:1,stoichiometry ratio of NH_(2) to COOH),pH(5.0-8.0)of P-containing solutions,initial P concentration(0.05-5 mmol/L),and the addition of calcium(Ca,0.1-5 mmol/L).We found that increasing the PEI:PAMcoAA ratio from1:2 to 3:1 significantly enhanced P removal efficiency,increasing from 47.21%to 95.44%.Under neutral pH conditions without calcium(Ca),PEI-PAMcoAA coacervates demonstrated optimal P removal capabilities(achieving an efficiency of 77.96%)through electrostatic adsorption.In contrast,the addition of Ca under alkaline conditions markedly improved P removal efficiency,increasing it from 64.16%to 82.42%.Detailed analyses of P within the coacervates indicated that Ca facilitates P precipitation and provides additional binding sites.These findings demonstrated that PEI-(Ca)-PAMcoAA coacervates show promise for efficiently removing P,particularly at low P concentrations.After the Premoval,the immobilized P can potentially be reused directly,as P able to be released from the reacted products.Therefore,the reacted coacervates could serve as a non-toxic fertilizer.Given its simplicity,high efficiency,and environmental friendliness,P removal based on bioinspired coacervates represents a low-hanging fruit in the pursuit of sustainable P management.