Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are ava...Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.展开更多
In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is mode...In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.展开更多
基金the National Natural Science Foundation of China (No.69872029)
文摘Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.
文摘In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.