Ion channels present in the plasma membrane are responsible for integration and propagation of electric signals,which transmit information in nerve cells.Malfunction of these ion channels leads to many neurological di...Ion channels present in the plasma membrane are responsible for integration and propagation of electric signals,which transmit information in nerve cells.Malfunction of these ion channels leads to many neurological diseases.Recently,optogenetic technology has gained a lot of attention for the manipulation of neuronal circuits.Optogenetics is a neuromodulation approach that has been developed to control neuronal functions and activities using light.The lanthanide-doped upconversion nanoparticles(UCNPs)absorb low energy photons in near-infrared(NIR) window and emit high energy photons in the visible spectrum region via nonlinear processes.In the last few decades,UCNPs have gained great attention in various bio-medical applications such as bio-imaging,drug delivery and optogenetics.The near-infrared illumination is considered more suitable for optogenetics application,due to its lower degree of light attenuation and higher tissue penetration compared to visible light.Therefore,UCNPs have been considered as the new promising candidates for optogenetics applications.Upconversion nanoparticlemediated optogenetic systems provide a great opportunity to manipulate the ion channel in deep tissue.Herein,we summarize the upconversion photoluminescence in lanthanide doped nanomaterials and its mechanisms and several approaches adopted to tune emission color or enhance upconversion efficiency.Recent advances of lanthanide-doped UCNPs design strategy and their mechanism are reviewed.Then,we discuss the neural circuitry modulation using upconversion nanoparticles mediated optogenetics.Moreover,the future perspectives towards optogenetics are also included.展开更多
Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)...Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)derived porous carbon via controlling the proportion of both water in a mixed solvent(dimethylformamide and water)and ligand in MOF-5 precursors(metal and ligand),which is categorized by its morphology(i.e.Cracked stone(closed),Tassel(open)and Intermediate(semi-open)).For example,decrease in water and increase in ligand content induce Cracked stone WDMs which showed the highest specific surface area(2742-2990 m^(2)/g)and pore volume(2.81-3.28 cm^(3)/g)after carbonization.Morphological effect of carbonized WDMs(CWDMs)on battery performance was examined by introducing electrolytes with different sulfur reduction mechanisms(i.e.DOL/DME and ACN_(2) LiTFSITTE):Closed framework effectively confines polysulfide,whereas open framework enhances electrolyte accessibility.The initial capacities of the batteries were in the following order:Cracked stone>Intermediate>Tassel for DOL/DME and Intermediate>Tassel>Cracked stone for ACN_(2) LiTFSI-TTE.To note,Intermediate CWDM exhibited the highest initial capacity and retained capacity after 100 cycles(1398 and 747 mAh/g)in ACN_(2) LiTFSI-TTE electrolyte having advantages from both open and closed frameworks.In sum,we could correlate cathode morphology(openness and pore structure)and electrolyte type(i.e.polysulfide solubility)with lithium-sulfur battery performance.展开更多
The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering r...The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.展开更多
In the article“Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging”by Bandana Padhan et al.(Journal of Polymer Materials,2025,Vol.42,No.2,pp.411–433.doi:10.32604/jpm.2024.059156),originally publi...In the article“Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging”by Bandana Padhan et al.(Journal of Polymer Materials,2025,Vol.42,No.2,pp.411–433.doi:10.32604/jpm.2024.059156),originally published online on December 9,2024,and formally included in Vol.42,No.2(published on July 11,2025).展开更多
Heteroatom doping has the potential to alter the electronic structure and optical properties of nanographenes,thereby expanding the scope of their utility in various applications.In this work we demonstrate a strategy...Heteroatom doping has the potential to alter the electronic structure and optical properties of nanographenes,thereby expanding the scope of their utility in various applications.In this work we demonstrate a strategy to introduce an oxygen atom directly and precisely into backbone of the already formed metal-nanographene complexes.Treating metal-nanographene complexes HBCP-M(M=Cu,Ag,Au)with Davis’oxaziridine produces oxygen-doped complexes HBCP-OM(M=Cu,Ag,Au)with adj-CONN coordination in one step.Compared with original metal complexes,the electronic structure,photophysical properties and molecular conformations of HBCP-OM show sharp changes,as indicated by steady and fs-transient absorption(TA)spectroscopies,DFT calculations and crystal structure analysis.Moreover,the reduction of coordination cavity of HBCP-OM due to oxygen insertion affects the metal-ligand interaction.This leads that HBCP-OCu,possessing a relatively small Cu(III)cation,exhibits an extended near-infrared(NIR)absorption beyond 1300 nm that is not observed inHBCP-OAg and HBCP-OAu.展开更多
基金Project supported by the Fonds de recherche du Québec-Nature et technologies(FRQNT)Canada for Merit Scholarship Program for Foreign Students(PBEEE)Fellowship。
文摘Ion channels present in the plasma membrane are responsible for integration and propagation of electric signals,which transmit information in nerve cells.Malfunction of these ion channels leads to many neurological diseases.Recently,optogenetic technology has gained a lot of attention for the manipulation of neuronal circuits.Optogenetics is a neuromodulation approach that has been developed to control neuronal functions and activities using light.The lanthanide-doped upconversion nanoparticles(UCNPs)absorb low energy photons in near-infrared(NIR) window and emit high energy photons in the visible spectrum region via nonlinear processes.In the last few decades,UCNPs have gained great attention in various bio-medical applications such as bio-imaging,drug delivery and optogenetics.The near-infrared illumination is considered more suitable for optogenetics application,due to its lower degree of light attenuation and higher tissue penetration compared to visible light.Therefore,UCNPs have been considered as the new promising candidates for optogenetics applications.Upconversion nanoparticlemediated optogenetic systems provide a great opportunity to manipulate the ion channel in deep tissue.Herein,we summarize the upconversion photoluminescence in lanthanide doped nanomaterials and its mechanisms and several approaches adopted to tune emission color or enhance upconversion efficiency.Recent advances of lanthanide-doped UCNPs design strategy and their mechanism are reviewed.Then,we discuss the neural circuitry modulation using upconversion nanoparticles mediated optogenetics.Moreover,the future perspectives towards optogenetics are also included.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea by the Korea government(MEST)(grant number NRF2019R1A2C4069922)the“LG Research Fund for New Faculty”by LG Chem。
文摘Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)derived porous carbon via controlling the proportion of both water in a mixed solvent(dimethylformamide and water)and ligand in MOF-5 precursors(metal and ligand),which is categorized by its morphology(i.e.Cracked stone(closed),Tassel(open)and Intermediate(semi-open)).For example,decrease in water and increase in ligand content induce Cracked stone WDMs which showed the highest specific surface area(2742-2990 m^(2)/g)and pore volume(2.81-3.28 cm^(3)/g)after carbonization.Morphological effect of carbonized WDMs(CWDMs)on battery performance was examined by introducing electrolytes with different sulfur reduction mechanisms(i.e.DOL/DME and ACN_(2) LiTFSITTE):Closed framework effectively confines polysulfide,whereas open framework enhances electrolyte accessibility.The initial capacities of the batteries were in the following order:Cracked stone>Intermediate>Tassel for DOL/DME and Intermediate>Tassel>Cracked stone for ACN_(2) LiTFSI-TTE.To note,Intermediate CWDM exhibited the highest initial capacity and retained capacity after 100 cycles(1398 and 747 mAh/g)in ACN_(2) LiTFSI-TTE electrolyte having advantages from both open and closed frameworks.In sum,we could correlate cathode morphology(openness and pore structure)and electrolyte type(i.e.polysulfide solubility)with lithium-sulfur battery performance.
文摘The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.
文摘In the article“Recent Advancements in Nanocomposites-Based Antibiofilm Food Packaging”by Bandana Padhan et al.(Journal of Polymer Materials,2025,Vol.42,No.2,pp.411–433.doi:10.32604/jpm.2024.059156),originally published online on December 9,2024,and formally included in Vol.42,No.2(published on July 11,2025).
基金Beijing Normal University(BNU)was supported by National Natural Science Foundation of China(grant no.22275020 to X.-S.K.)BNU startup funding(grant no.312232114 to X.-S.K.)+4 种基金Yonsei University was supported by the National Research Foundation of Korea(NRF)funded by the Korea Government(MSIT)(No.RS-2025-00523354 to J.K.)Kyungpook National University was supported by the NRF funded by the Korea Government(MSIT)(No.RS-2024-00343229 and RS-2024-00404760 to J.O.)Austin was supported by the Robert A.Welch Foundation(F-0018 to J.L.S.)by the National Science Foundation(CHE-2304731 to J.L.S.)Prof.Changgui Zhao at BNU for helpful suggestions.
文摘Heteroatom doping has the potential to alter the electronic structure and optical properties of nanographenes,thereby expanding the scope of their utility in various applications.In this work we demonstrate a strategy to introduce an oxygen atom directly and precisely into backbone of the already formed metal-nanographene complexes.Treating metal-nanographene complexes HBCP-M(M=Cu,Ag,Au)with Davis’oxaziridine produces oxygen-doped complexes HBCP-OM(M=Cu,Ag,Au)with adj-CONN coordination in one step.Compared with original metal complexes,the electronic structure,photophysical properties and molecular conformations of HBCP-OM show sharp changes,as indicated by steady and fs-transient absorption(TA)spectroscopies,DFT calculations and crystal structure analysis.Moreover,the reduction of coordination cavity of HBCP-OM due to oxygen insertion affects the metal-ligand interaction.This leads that HBCP-OCu,possessing a relatively small Cu(III)cation,exhibits an extended near-infrared(NIR)absorption beyond 1300 nm that is not observed inHBCP-OAg and HBCP-OAu.