Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference ...Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects.展开更多
Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quali...Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.展开更多
Lipidomics is an emerging discipline that systematically studies the various types,functions,and metabolic pathways of lipids within living organisms.This field compares changes in diseases or drug impact,identifying ...Lipidomics is an emerging discipline that systematically studies the various types,functions,and metabolic pathways of lipids within living organisms.This field compares changes in diseases or drug impact,identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states.Through employing analytical chemistry within the realm of lipidomics,researchers analyze traditional Chinese medicine(TCM).This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions,assessing drug efficacy,understanding mechanisms of action and toxicity,and generating innovative ideas for disease prevention and treatment.This manuscript assesses recent literature,summarizing existing lipidomics technologies and their applications in TCM research.It delineates the efficacy,mechanisms,and toxicity research related to lipidomics in Chinese medicine.Additionally,it explores the utilization of lipidomics in quality control research for Chinese medicine,aiming to expand the application of lipidomics within this field.Ultimately,this initiative seeks to foster the integration of traditional medicine theory with modern science and technology,promoting an organic fusion between the two domains.展开更多
Efficient exciton transport over long distances is crucial for organic optoelectronics.Despite efforts to improve the transport properties of organic semiconductors,the limited exciton diffusion remains a significant ...Efficient exciton transport over long distances is crucial for organic optoelectronics.Despite efforts to improve the transport properties of organic semiconductors,the limited exciton diffusion remains a significant obstacle for light-harvesting applications.In this study,we observe phenomena where exciton transport is significantly enhanced by light irradiation in the organic molecular crystal of 2,2'-(2,5-bis(2,2-diphenylvinyl)-1,4-phenylene)dinaphthalene(BDVPN).The exciton transport in this material is improved,as evidenced by the increased diffusion coefficient from 10^(−3) cm^(2)·s^(−1) to over 1 cm^(2)·s^(−1) and a prolonged diffusion length from less than 50 nm to nearly 700 nm characterized by time-resolved photoluminescence microscopy(TPLM).Additionally,we confirmed the enhancement of charge transport capability under irradiation as additional evidence of improved transport properties of the material.These intriguing phenomena may be associated with the material’s twisted molecular conformation and rotatable single bonds,which facilitate light-induced structural alterations conducive to efficient transport properties.Our work provides a novel insight into developing organic semiconductors with efficient exciton transport.展开更多
Microneurovascular units(mNVUs),comprising neurons,micro-glia,and blood-brain barrier(BBB)endothelial cells,are pivotal to the central nervous system and are associated with cerebral hypoxia and brain injuries.Cerebra...Microneurovascular units(mNVUs),comprising neurons,micro-glia,and blood-brain barrier(BBB)endothelial cells,are pivotal to the central nervous system and are associated with cerebral hypoxia and brain injuries.Cerebral hypoxia triggers microglial overactivity,causing inflammation,neuronal injury,and disruption of the BBB[1].Salidroside(Sal),a key compound in Tibetan medicine Rhodiola crenulata,mitigates hypoxia-induced metabolic disorders and neuronal damage by preserving mitochondrial function[2].展开更多
Frequency-modulated continuous-wave light detection and ranging(FMCW lidar)is a powerful high-precision ranging and three-dimensional(3D)imaging technology with inherent immunity to ambient light and the ability to si...Frequency-modulated continuous-wave light detection and ranging(FMCW lidar)is a powerful high-precision ranging and three-dimensional(3D)imaging technology with inherent immunity to ambient light and the ability to simultaneously yield distance and velocity information.However,the current withdraws of the traditional FMCW lidar systems are the poor resistance to environmental disturbance and high requirements for echo power,which greatly restrict their applications for high-precision ranging of noncooperative targets in dynamic measurement scenes.Here,we report an all-fiber anti-interference FMCW lidar system with high sensitivity and precision,employing a unique self-mixing stimulation radiation process for signal amplification,a special reversely chirped dual laser structure,and a common-path design for disturbance compensation.We evaluate the ranging accuracy,precision,and stability of the system completely.Finally,we demonstrate an ultralow echo detection limit of subpicowatts with a probe power of below 0.1 mW,a state-of-art localization accuracy of better than 50μm,high stability with a standard deviation of 6.51μm over 3 h,and high-quality 3D imaging of noncooperative objects in a fluctuating environment.With the advantages of high precision and stability,weak signal detection capability,and anti-interference ability,the proposed system has potential applications in space exploration,autodriving,and high-precision manufacturing.展开更多
Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training dataset...Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.展开更多
Absolute distance measurement is a fundamental technique in mobile and large-scale dimensional metrology.Dual-comb ranging is emerging as a powerful tool that exploits phase resolution and frequency accuracy for high-...Absolute distance measurement is a fundamental technique in mobile and large-scale dimensional metrology.Dual-comb ranging is emerging as a powerful tool that exploits phase resolution and frequency accuracy for high-precision and fast-rate distance measurement.Using two coherent frequency combs,dual-comb ranging allows time and phase response to be measured rapidly.It breaks through the limitations related to the responsive bandwidth,ambiguity range,and dynamic measurement characteristics of conventional ranging tools.This review introduces dual-comb ranging and summarizes the key techniques for realizing this ranging tool.As optical frequency comb technology progresses,dualcomb ranging shows promise for various professional applications.展开更多
Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between g...Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.展开更多
Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics.In this work,a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti_(3)C_(2)...Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics.In this work,a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti_(3)C_(2)Tx(PVA/MXene)nanofibers film and monolayer molybdenum diselenide(MoSe2)piezoelectric nanogenerator(PENG)was reported for the first time.The monolayer MoSe_(2)-based PENG was fabricated by atmospheric pressure chemical vapor deposition techniques,which can generate a peak output of 35 mV and a power density of42 mW m^(-2).The flexible PENG integrated on polyethylene terephthalate(PET)substrate can harvest energy generated by different parts of human body and exhibit great application prospects in wearable devices.The electrospinned PVA/MXene nanofiber-based humidity sensor with flexible PET substrate under the driven of monolayer MoSe_(2) PENG,shows high response of~40,fast response/recovery time of 0.9/6.3 s,low hysteresis of 1.8%and excellent repeatability.The self-powered flexible humidity sensor yields the capability of detecting human skin moisture and ambient humidity.This work provides a pathway to explore the high-performance humidity sensor integrated with PENG for the self-powered flexible electronic devices.展开更多
We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical ...We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming.展开更多
The orthogonally linearly polarized dual frequency Nd: YA G lasers with two quarter wave plates in laser resonator are proposed. The intra-cavity variable birefringence, which is caused by relative rotation of these ...The orthogonally linearly polarized dual frequency Nd: YA G lasers with two quarter wave plates in laser resonator are proposed. The intra-cavity variable birefringence, which is caused by relative rotation of these two wave plates in laser inner cavity, results in the frequency difference of the dual frequency laser also changeable. The theory model based on the Jones matrix is presented, as well as experimental results. The potential application of this phenomenon in precision roll-angle measurement is also discussed.展开更多
The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to...The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights’ intensities separately with a Wollaston prism instead of to detect the whole light’s intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.展开更多
Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in...Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in urine based on reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) detector was proposed. After pretreatment by dilution, centrifugation and filtration, the biomarkers in urine samples were separated by ODS-BP column by elution with methanol/50 mM NaH2PO4 buffer solution at pH 5.26 (5:95). Good linearity between peak areas and concentrations of standards was obtained for the biomarkers with correlation coefficients in the range of 0.9957-0.9993. The proposed analytical method has satisfactory repeatability (the recovery of data in a range of creatinine, uric acid, hypoxanthine and xanthine was 93.49-97.90%, 95.38-96.45%, 112.46-115.78%and 90.82-97.13%with standard deviation of o5%, respectively) and the limits of detection (LODs, S/N Z 3) for creatinine, uric acid, hypoxanthine, and xanthine were 0.010, 0.025, 0.050 and 0.025 mg/L, respectively. The established method was proved to be simple, accurate, sensitive and reliable for the quantitation of gouty arthritis' biomarkers in human urine samples. The ratio of creatinine to uric acid was found to be a possible factor for assessment of gouty arthritis.展开更多
With high hardness, high thermal and chemical stability and excellent optical performance, hard materials exhibit great potential applications in various fields, especially in harsh conditions. Femtosecond laser ablat...With high hardness, high thermal and chemical stability and excellent optical performance, hard materials exhibit great potential applications in various fields, especially in harsh conditions. Femtosecond laser ablation has the capability to fabricate three-dimensional micro/nanostructures in hard materials. However, the low efficiency, low precision and high surface roughness are the main stumbling blocks for femtosecond laser processing of hard materials. So far, etching- assisted femtosecond laser modification has demonstrated to be the efficient strategy to solve the above problems when processing hard materials, including wet etching and dry etching. In this review, femtosecond laser modification that would influence the etching selectivity is introduced. The fundamental and recent applications of the two kinds of etching assisted femtosecond laser modification technologies are summarized. In addition, the challenges and application prospects of these technologies are discussed.展开更多
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle ...We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.展开更多
Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rap...Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies.As promising alterna-tives for natural enzymes,nanozymes have broadened the way toward clinical medicine,food safety,environmental monitoring,and chemical production.The past decade has witnessed the rapid development of metal-and metal oxide-based nanozymes owing to their remarkable physicochemical proper-ties in parallel with low cost,high stability,and easy storage.It is widely known that the deep study of catalytic activities and mechanism sheds sig-nificant influence on the applications of nanozymes.This review digs into the characteristics and intrinsic properties of metal-and metal oxide-based nanozymes,especially emphasizing their catalytic mechanism and recent applications in biological analysis,relieving inflammation,antibacterial,and cancer therapy.We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.展开更多
Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, t...Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals.展开更多
The ultraviolet(UV) photoresponses of ZnO nanorods directly grown on and between two micro Au-electrodes by using electric-field-assisted wet chemical method are measured comprehensively under different conditions, ...The ultraviolet(UV) photoresponses of ZnO nanorods directly grown on and between two micro Au-electrodes by using electric-field-assisted wet chemical method are measured comprehensively under different conditions, including ambient environment, applied bias voltage, gate voltage and temperature. Experimental results indicate that the photoresponses of the ZnO nanorods can be modulated by surface oxygen adsorptions, applied voltages, as well as temperatures. A model taking into account both surface adsorbed oxygen and electron-hole activities inside ZnO nanorods is proposed. The enhancement effect of the bias voltage on photoresponse is also analyzed. Experimental results shows that the UV response time(to 63%) of ZnO nanorods in air and at 59°C could be shortened from 34.8 s to 0.24 s with a bias of 4 V applied between anode and cathode.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
基金supported by the National Natural Science Foundation of China(62035003 and 62235009).
文摘Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects.
基金financial supports from National Key Research and Development Program of China (2021YFA1401000)National Natural Science Foundation of China (62435009)+2 种基金Beijing Municipal Natural Science Foundation (Z220008)Zhuhai Industry University Research Collaboration Project (ZH-2201700121010)supported by the Center of High Performance Computing,Tsinghua University
文摘Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.
基金funded by the Sanming Project of Medicine in Shenzhen,China(Grant No.:SZZYSM202106004)the National Natural Science Foundation of China(Grant No.:82272960)+1 种基金the Shenzhen Science and Technology Innovation Commission,China(Grant No.:JCYJ20210324142012033)the Scientific Research Project of Guangdong Provincial Bureau of Traditional Chinese Medicine,China(Grant No.:20252037).
文摘Lipidomics is an emerging discipline that systematically studies the various types,functions,and metabolic pathways of lipids within living organisms.This field compares changes in diseases or drug impact,identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states.Through employing analytical chemistry within the realm of lipidomics,researchers analyze traditional Chinese medicine(TCM).This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions,assessing drug efficacy,understanding mechanisms of action and toxicity,and generating innovative ideas for disease prevention and treatment.This manuscript assesses recent literature,summarizing existing lipidomics technologies and their applications in TCM research.It delineates the efficacy,mechanisms,and toxicity research related to lipidomics in Chinese medicine.Additionally,it explores the utilization of lipidomics in quality control research for Chinese medicine,aiming to expand the application of lipidomics within this field.Ultimately,this initiative seeks to foster the integration of traditional medicine theory with modern science and technology,promoting an organic fusion between the two domains.
基金the National Natural Science Foundation of China(No.62075115,62335013,22275065,52073116)the National Key R&D Program of China(No.2022YFB4600400)the Natural Science Foundation of Jilin Province(20240101003JJ)for their financial support.
文摘Efficient exciton transport over long distances is crucial for organic optoelectronics.Despite efforts to improve the transport properties of organic semiconductors,the limited exciton diffusion remains a significant obstacle for light-harvesting applications.In this study,we observe phenomena where exciton transport is significantly enhanced by light irradiation in the organic molecular crystal of 2,2'-(2,5-bis(2,2-diphenylvinyl)-1,4-phenylene)dinaphthalene(BDVPN).The exciton transport in this material is improved,as evidenced by the increased diffusion coefficient from 10^(−3) cm^(2)·s^(−1) to over 1 cm^(2)·s^(−1) and a prolonged diffusion length from less than 50 nm to nearly 700 nm characterized by time-resolved photoluminescence microscopy(TPLM).Additionally,we confirmed the enhancement of charge transport capability under irradiation as additional evidence of improved transport properties of the material.These intriguing phenomena may be associated with the material’s twisted molecular conformation and rotatable single bonds,which facilitate light-induced structural alterations conducive to efficient transport properties.Our work provides a novel insight into developing organic semiconductors with efficient exciton transport.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82274207,81973569,22034005)the Xinglin Scholar Research Promotion Project of Chengdu University of Traditional Chinese Medicine,China(Grant No.:XKTD2022013)the Sichuan Provincial Natural Science Foundation,China(Grant No.:24NSFSC1748).
文摘Microneurovascular units(mNVUs),comprising neurons,micro-glia,and blood-brain barrier(BBB)endothelial cells,are pivotal to the central nervous system and are associated with cerebral hypoxia and brain injuries.Cerebral hypoxia triggers microglial overactivity,causing inflammation,neuronal injury,and disruption of the BBB[1].Salidroside(Sal),a key compound in Tibetan medicine Rhodiola crenulata,mitigates hypoxia-induced metabolic disorders and neuronal damage by preserving mitochondrial function[2].
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC2200204)the National Excellent Youth Science Fund Project of the National Natural Science Foundation of China(Grant No.51722506)the Tsinghua University Initiative Scientific Research Program(Grant No.2021Z11GHX002).
文摘Frequency-modulated continuous-wave light detection and ranging(FMCW lidar)is a powerful high-precision ranging and three-dimensional(3D)imaging technology with inherent immunity to ambient light and the ability to simultaneously yield distance and velocity information.However,the current withdraws of the traditional FMCW lidar systems are the poor resistance to environmental disturbance and high requirements for echo power,which greatly restrict their applications for high-precision ranging of noncooperative targets in dynamic measurement scenes.Here,we report an all-fiber anti-interference FMCW lidar system with high sensitivity and precision,employing a unique self-mixing stimulation radiation process for signal amplification,a special reversely chirped dual laser structure,and a common-path design for disturbance compensation.We evaluate the ranging accuracy,precision,and stability of the system completely.Finally,we demonstrate an ultralow echo detection limit of subpicowatts with a probe power of below 0.1 mW,a state-of-art localization accuracy of better than 50μm,high stability with a standard deviation of 6.51μm over 3 h,and high-quality 3D imaging of noncooperative objects in a fluctuating environment.With the advantages of high precision and stability,weak signal detection capability,and anti-interference ability,the proposed system has potential applications in space exploration,autodriving,and high-precision manufacturing.
基金We are grateful for financial supports from National Natural Science Foundation of China(62035003,61775117)China Postdoctoral Science Foundation(BX2021140)Tsinghua University Initiative Scientific Research Program(20193080075).
文摘Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm.
基金the National Natural Science Foundation of China(61575105,61611140125)Beijing Natural Science Foundation(3182011)Shenzhen Fundamental Research Funding(JCYJ20170412171535171).
文摘Absolute distance measurement is a fundamental technique in mobile and large-scale dimensional metrology.Dual-comb ranging is emerging as a powerful tool that exploits phase resolution and frequency accuracy for high-precision and fast-rate distance measurement.Using two coherent frequency combs,dual-comb ranging allows time and phase response to be measured rapidly.It breaks through the limitations related to the responsive bandwidth,ambiguity range,and dynamic measurement characteristics of conventional ranging tools.This review introduces dual-comb ranging and summarizes the key techniques for realizing this ranging tool.As optical frequency comb technology progresses,dualcomb ranging shows promise for various professional applications.
基金Project (No. 2001AA413210) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.
基金supported by the National Natural Science Foundation of China(51777215)National Natural Science Foundation of China(51775306)+1 种基金Beijing Municipal Natural Science Foundation(4192027)the Graduate Innovation Fund of China University of Petroleum(YCX2020097)。
文摘Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics.In this work,a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti_(3)C_(2)Tx(PVA/MXene)nanofibers film and monolayer molybdenum diselenide(MoSe2)piezoelectric nanogenerator(PENG)was reported for the first time.The monolayer MoSe_(2)-based PENG was fabricated by atmospheric pressure chemical vapor deposition techniques,which can generate a peak output of 35 mV and a power density of42 mW m^(-2).The flexible PENG integrated on polyethylene terephthalate(PET)substrate can harvest energy generated by different parts of human body and exhibit great application prospects in wearable devices.The electrospinned PVA/MXene nanofiber-based humidity sensor with flexible PET substrate under the driven of monolayer MoSe_(2) PENG,shows high response of~40,fast response/recovery time of 0.9/6.3 s,low hysteresis of 1.8%and excellent repeatability.The self-powered flexible humidity sensor yields the capability of detecting human skin moisture and ambient humidity.This work provides a pathway to explore the high-performance humidity sensor integrated with PENG for the self-powered flexible electronic devices.
文摘We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming.
基金Supported by the National Natural Science Foundation of China under Grant No 50575110.
文摘The orthogonally linearly polarized dual frequency Nd: YA G lasers with two quarter wave plates in laser resonator are proposed. The intra-cavity variable birefringence, which is caused by relative rotation of these two wave plates in laser inner cavity, results in the frequency difference of the dual frequency laser also changeable. The theory model based on the Jones matrix is presented, as well as experimental results. The potential application of this phenomenon in precision roll-angle measurement is also discussed.
文摘The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights’ intensities separately with a Wollaston prism instead of to detect the whole light’s intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.
基金supported by the National Natural Science Foundation of China(No.21275088)
文摘Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in urine based on reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) detector was proposed. After pretreatment by dilution, centrifugation and filtration, the biomarkers in urine samples were separated by ODS-BP column by elution with methanol/50 mM NaH2PO4 buffer solution at pH 5.26 (5:95). Good linearity between peak areas and concentrations of standards was obtained for the biomarkers with correlation coefficients in the range of 0.9957-0.9993. The proposed analytical method has satisfactory repeatability (the recovery of data in a range of creatinine, uric acid, hypoxanthine and xanthine was 93.49-97.90%, 95.38-96.45%, 112.46-115.78%and 90.82-97.13%with standard deviation of o5%, respectively) and the limits of detection (LODs, S/N Z 3) for creatinine, uric acid, hypoxanthine, and xanthine were 0.010, 0.025, 0.050 and 0.025 mg/L, respectively. The established method was proved to be simple, accurate, sensitive and reliable for the quantitation of gouty arthritis' biomarkers in human urine samples. The ratio of creatinine to uric acid was found to be a possible factor for assessment of gouty arthritis.
基金This work was supported by the National Key Research and Development Program of China and National Natural Science Foundation of China (NSFC) under Grants 2017YFB1104300,61590930,61825502,61805098 and 61960206003.
文摘With high hardness, high thermal and chemical stability and excellent optical performance, hard materials exhibit great potential applications in various fields, especially in harsh conditions. Femtosecond laser ablation has the capability to fabricate three-dimensional micro/nanostructures in hard materials. However, the low efficiency, low precision and high surface roughness are the main stumbling blocks for femtosecond laser processing of hard materials. So far, etching- assisted femtosecond laser modification has demonstrated to be the efficient strategy to solve the above problems when processing hard materials, including wet etching and dry etching. In this review, femtosecond laser modification that would influence the etching selectivity is introduced. The fundamental and recent applications of the two kinds of etching assisted femtosecond laser modification technologies are summarized. In addition, the challenges and application prospects of these technologies are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.61036016)
文摘We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
基金the supports of the National Foundational Basic Research Project of China(2017YFA0205301)National Nature Scientific Foundation Innovation Team of China(81921002)+6 种基金National Nature Scientific foundation of China(8202010801,81903169,81803094,81602184,81822024 and 81571729)Shanghai Municipal Commission of Economy and Information Technology Fund(No.XC-ZXSJ-02-2016-05)the medical engineering cross project of Shanghai Jiao Tong University(YG2017Z D05)the Project of Thousand Youth Talents from Chinathe National Key Research and Development Program of China(2017YFC1200904)the financial support of China Postdoctoral Science Foundation(2020TQ0191)Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument(No.15DZ2252000)。
文摘Since the ferromagnetic(Fe_(3)O_(4))nanoparticles were firstly reported to exert enzyme-like activity in 2007,extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies.As promising alterna-tives for natural enzymes,nanozymes have broadened the way toward clinical medicine,food safety,environmental monitoring,and chemical production.The past decade has witnessed the rapid development of metal-and metal oxide-based nanozymes owing to their remarkable physicochemical proper-ties in parallel with low cost,high stability,and easy storage.It is widely known that the deep study of catalytic activities and mechanism sheds sig-nificant influence on the applications of nanozymes.This review digs into the characteristics and intrinsic properties of metal-and metal oxide-based nanozymes,especially emphasizing their catalytic mechanism and recent applications in biological analysis,relieving inflammation,antibacterial,and cancer therapy.We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
文摘Sonar generated acoustic signals transmitted in underwater channel for distant communications are affected by numerous factors like ambient noise, making them nonlinear and non-stationary in nature. In recent years, the application of Empirical Mode Decomposition(EMD) technique to analyze nonlinear and non-stationary signals has gained much attention. It is an empirical approach to decompose a signal into a set of oscillatory modes known as intrinsic mode functions(IMFs). In general, Hilbert transform is used in EMD for the identification of oscillatory signals. In this paper a new EMD algorithm is proposed using FFT to identify and extract the acoustic signals available in the underwater channel that are corrupted due to various ambient noises over a range of 100 Hz to 10 kHz in a shallow water region. Data for analysis are collected at a depth of 5 m and 10 m offshore Chennai at the Bay of Bengal. The algorithm is validated for different sets of known and unknown reference signals. It is observed that the proposed EMD algorithm identifies and extracts the reference signals against various ambient noises. Significant SNR improvement is also achieved for underwater acoustic signals.
基金Project supported by the National Natural Science Foundation of China(Grant No.91123017)
文摘The ultraviolet(UV) photoresponses of ZnO nanorods directly grown on and between two micro Au-electrodes by using electric-field-assisted wet chemical method are measured comprehensively under different conditions, including ambient environment, applied bias voltage, gate voltage and temperature. Experimental results indicate that the photoresponses of the ZnO nanorods can be modulated by surface oxygen adsorptions, applied voltages, as well as temperatures. A model taking into account both surface adsorbed oxygen and electron-hole activities inside ZnO nanorods is proposed. The enhancement effect of the bias voltage on photoresponse is also analyzed. Experimental results shows that the UV response time(to 63%) of ZnO nanorods in air and at 59°C could be shortened from 34.8 s to 0.24 s with a bias of 4 V applied between anode and cathode.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.