The nonuniform microstructure of magnesium alloy rolled sheets tends to influence their plastic deformation capacity.This study employed multi-pass restricted rolling to successfully prepare AZ31 magnesium alloy rolle...The nonuniform microstructure of magnesium alloy rolled sheets tends to influence their plastic deformation capacity.This study employed multi-pass restricted rolling to successfully prepare AZ31 magnesium alloy rolled sheets with a uniform microstructure,enhancing their mechanical properties.Quasi-in-situ tensile EBSD was used to investigate the effect of microstructure uniformity on the plastic deformation and fracture behavior of magnesium alloy.The results demonstrate that the nonuniformity of the magnesium alloy microstructure intensifies the strain asynchrony between adjacent grains,leading to relative misalignment and crack formation.Fine grains cannot coordinate the strain within their adjacent coarse grains,resulting in ledge formation at their common grain boundaries.Moreover,low-angle grain boundaries(LAGB)influence fracture behavior,rendering fine grains penetrated by LAGB more susceptible to becoming strain concentration areas that promote intergranular fracture and even transgranular fracture.展开更多
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a...The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide...Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.展开更多
The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the...The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.展开更多
Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(...Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,an...Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.展开更多
To modify the stable thermodynamics and poor kinetics of magnesium hydride(MgH_(2))for solid-state hydrogen storage,MIL-100(Fe)was in situ fabricated on the surfaces of TiO_(2)nano-sheets(NS)by a self-assembly method,...To modify the stable thermodynamics and poor kinetics of magnesium hydride(MgH_(2))for solid-state hydrogen storage,MIL-100(Fe)was in situ fabricated on the surfaces of TiO_(2)nano-sheets(NS)by a self-assembly method,and the prepared TiO_(2)NS@MIL-100(Fe)presents an excellent catalytic effect on MgH_(2).The MgH_(2)+7wt.%TiO_(2)NS@MIL-100(Fe)composite can release hydrogen at 200℃,achieving a decrease of 150℃ compared to pure MgH_(2).Besides,the activation energy of dehydrogenation is decreased to 70.62 kJ/mol and 4 wt.%H_(2) can be desorbed within 20 min at a low temperature of 235℃.Under conditions of 100℃ and 3 MPa,MgH_(2)+7wt.%TiO_(2)NS@MIL-100(Fe)absorbs 5 wt.%of H_(2) in 10 min.Surprisingly,6.62 wt.%reversible capacity is maintained after 50 cycles.The modification mechanism is confirmed that the presence of oxygen vacancies and the synergistic effect of multivalent titanium in TiO_(2)NS@MIL-100(Fe)greatly enhance the kinetic and thermodynamic properties of MgH_(2).展开更多
In this study,we present the fabrication of vertical SnO/β-Ga_(2)O_(3) heterojunction diode(HJD)via radio frequency(RF)reactive magnetron sputtering.The valence and conduction band offsets betweenβ-Ga_(2)O_(3) and S...In this study,we present the fabrication of vertical SnO/β-Ga_(2)O_(3) heterojunction diode(HJD)via radio frequency(RF)reactive magnetron sputtering.The valence and conduction band offsets betweenβ-Ga_(2)O_(3) and SnO are determined to be 2.65and 0.75 eV,respectively,through X-ray photoelectron spectroscopy,showing a type-Ⅱband alignment.Compared to its Schottky barrier diode(SBD)counterpart,the HJD presents a comparable specific ON-resistances(R_(on,sp))of 2.8 mΩ·cm^(2) and lower reverse leakage current(I_R),leading to an enhanced reverse blocking characteristics with breakdown voltage(BV)of 1675 V and power figure of merit(PFOM)of 1.0 GW/cm~2.This demonstrates the high quality of the SnO/β-Ga_(2)O_(3) heterojunction interface.Silvaco TCAD simulation further reveals that electric field crowding at the edge of anode for the SBD was greatly depressed by the introduction of SnO film,revealing the potential application of SnO/β-Ga_(2)O_(3) heterojunction in the futureβ-Ga_(2)O_(3)-based power devices.data mining,AI training,and similar technologies,are reserved.展开更多
Presetting tensile twins(TTs)can enhance the mechanical properties of magnesium(Mg)alloys.Two as-received(AR)sheets,as-received state-A(AR-A)with fiber texture and nonuniform grains and as-received state-B with basal ...Presetting tensile twins(TTs)can enhance the mechanical properties of magnesium(Mg)alloys.Two as-received(AR)sheets,as-received state-A(AR-A)with fiber texture and nonuniform grains and as-received state-B with basal texture and uniform equiaxial grains are selected to induce TTs via a novel method called corrugated wide limit alignment(CWLA),and the corresponding CWLA-processed sheets are denoted as CWLA-processed state-A(C-A)and CWLA-processed state-B(C-B).The results demonstrate that a larger initial average grain size correlates with a higher fraction of TTs induced in Mg sheets,thereby refining the grains and forming a new rolling direction(RD)tilted texture during CWLA.The ultimate tensile strength increases by 32%from AR-A to C-A,primarily due to refinement strengthening and twinning-induced strain hardening.The recrystallization mechanism of C-A is dominated by twinning-induced dynamic recrystallization(DRX),where DRX grains prefer to inherit the orientation of TTs,resulting in an enhanced RD-tilted texture and the formation of multi-modal texture.The recrystallization mechanism of C-B is mainly discontinuous DRX and continuous DRX,and the DRX grains prefer to inherit the orientation of matrix grains,ultimately forming a basal texture.In summary,the tensile mechanical behavior of pre-twinned Mg sheets significantly depends on the grain size and texture of the AR sheets,so they present similar changing trends during tensile deformation.展开更多
Hydrogen,as a cheap,clean,and cost-effective secondary energy source,performs an essential role in optimizing today’s energy structure.Magnesium hydride(Mg H_(2))represents an attractive hydrogen carrier for storage ...Hydrogen,as a cheap,clean,and cost-effective secondary energy source,performs an essential role in optimizing today’s energy structure.Magnesium hydride(Mg H_(2))represents an attractive hydrogen carrier for storage and transportation,however,the kinetic behavior and operating temperature remain undesirable.In this work,a dual-phase multi-site alloy(Ms A)anchored on carbon substrates was designed,and its superior catalytic effects on the hydrogen storage properties of MgH_(2) were reported.Mechanism analysis identified that multi-site Fe Ni_(3)/Ni Cu nanoalloys synergistically served as intrinsic drivers for the striking de/hydrogenation performance of the MgH_(2)-Ms A systems.Concretely,the unique multi-metallic site structure attached to the surface of MgH_(2)provided substantial reversible channels and accessible active sites conducive to the adsorption,activation,and nucleation of H atoms.In addition,the coupling system formed by FeNi_(3) and NiCu dual-phase alloys further enhanced the reactivity between Mg/MgH_(2) and H atoms.Hence,the onset dehydrogenation temperature of Mg H_(2)+5 wt%Ms A was reduced to 195℃ and the hydrogen desorption apparent activation energy was reduced to 83.6 k J/mol.5.08 wt%H_(2) could be released at 250℃ in 20 min,reaching a high dehydrogenation rate of 0.254 wt%H_(2)/min,yet that for MgH_(2) at a higher temperature of 335℃ was only 0.145 wt%H_(2)/min.Then,the dehydrogenated Mg H_(2)-Ms A sample could absorb hydrogen from room temperature(30℃)and charge 3.93 wt%H_(2) at 100℃ within20 min under 3.0 MPa H_(2) pressure.Benefiting from carbon substrates,the 5 wt%Ms A doped-MgH_(2) could still maintain 6.36 wt%hydrogen capacity after 20 cycles.In conclusion,this work provides experimental rationale and new insights for the design of efficient catalysts for magnesium-based solid-state hydrogen storage materials.展开更多
In-situ enhanced bioreduction by functional materials is a cost-effective technology to remove chlorinated hydrocarbons in groundwater.Herein,a novel polydopamine(PDA)-modified biochar(BC)-based composite containing n...In-situ enhanced bioreduction by functional materials is a cost-effective technology to remove chlorinated hydrocarbons in groundwater.Herein,a novel polydopamine(PDA)-modified biochar(BC)-based composite containing nanoscale zero-valent iron(n ZVI)and poly-l-lactic acid(PLLA)(PB-PDA-Fe)was synthesized to enhance the removal of 1,1,1-trichloroethane(1,1,1-TCA)in simulated groundwater with actual site sediments.Its impact on functional microbial community structure in system was also investigated.The typical characterizations revealed uniform dispersion of PLA and n ZVI particles on the BC surface,being smoother after PDA coating.The composite exhibited a significantly higher performance on 1,1,1-TCA removal(82.38%,initial concentration 100 mg/L)than Fe-PDA and PB-PDA treatments.The diversity and richness of the microbial community in the composite treatment consistently decreased during incubation due to a synergistic effect between PLLA-BC and n ZVI.Desulfitobaterium,Pedobacter,Sphaerochaeta,Shewanella,and Clostridium were identified as enriched genera by the composite through DNA-stable isotope probing(DNA-SIP),playing a crucial role in the bioreductive dechlorination process.All the above results demonstrate that this novel composite selectively enhances the activity of microorganisms with extracellular respiration functions to efficiently dechlorinate 1,1,1-TCA.These findings could contribute to understanding the responsive microbial community by carbon-iron composites and expedite the application of in-situ enhanced bioreduction for effective remediation of chlorinated hydrocarbon-contaminated groundwater.展开更多
The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0....The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component.展开更多
Catalytic doping of magnesium hydride(MgH_(2))to improve its hydrogen ab/desorption kinetic properties is considered to be an effective and feasible method.In solid-phase catalysis,the extent of contact between the ca...Catalytic doping of magnesium hydride(MgH_(2))to improve its hydrogen ab/desorption kinetic properties is considered to be an effective and feasible method.In solid-phase catalysis,the extent of contact between the catalyst and the substrate determines the catalytic reaction in a great sense.With large specific surface area and abundant active sites,two-dimensional(2D)nanomaterials are promising catalysts for MgH_(2)via providing numerous pathways for the diffusion and dissociation of hydrogen.In this regard,2D NiMn-based layered double hydroxide and layered metallic oxide(LMO)are designed and introduced into MgH_(2)to improve its hydrogen storage properties.Simultaneous enhancement in interfacial contact,desorption temperature and kinetics are achieved.The MgH_(2)+9wt%Ni3Mn-LMO composites begin to discharge hydrogen at only 190℃and 6.10wt%H_(2)could be charged in 600 s at 150℃.The activation energy for de/hydrogenation is reduced by 42.43%and 46.56%,respectively,compared to pure MgH_(2).Even at a low operating temperature of 235℃,the modified system was still able to release 4.44wt%H_(2)in an hour,which has rarely been reported in previous studies.Microstructure observations and density functional theory calculations revealed that first,the hydrogen pumping effect of Mg_(2)Ni/Mg_(2)NiH_(4) promotes the adsorption and desorption of hydrogen molecules on the surface of MgH_(2),second,MnOx drew electrons from Mg_(2)Ni,producing a new Density of State structure with a lower d-bond center.This unique change further strengthens the Mg_(2)Ni/Mg_(2)NiH_(4) pump effect on MgH_(2).Our work indicates that the application of 2D metal-based catalysts is a feasible and promising approach towards MgH_(2)for solid-state hydrogen storage to meet technical and scientific requirements.展开更多
Fe-Cr-Ni austenitic alloys are extensively utilized in the hot-end components of nuclear light water reactors,turbine disks,and gas compressors.However,their low strength at elevated temperatures limits their engineer...Fe-Cr-Ni austenitic alloys are extensively utilized in the hot-end components of nuclear light water reactors,turbine disks,and gas compressors.However,their low strength at elevated temperatures limits their engineering applications.In this study,a novel precipit-ation-strengthened alloy system is developed by incorporating Al and Si elements into a FeCrNi equiatomic alloy.The results indicate that the FeCrNiAl_(x)Si_(x)(at%,x=0.1,0.2)alloys possess heterogeneous precipitation structures that feature a micron-scaleσphase at the grain boundaries and a nanoscale ordered body-centered cube(B2)phase within the grains.An exceptional strength-ductility synergy across a wide temperature range is achieved in FeCrNiAl_(0.1)Si_(0.1)alloys due to grain refinement and precipitation strengthening.Notably,a yield strength of 693.83 MPa,an ultimate tensile strength of 817.55 MPa,and a uniform elongation of 18.27%are attained at 873 K.The dislo-cation shearing mechanism for B2 phases and the Orowan bypass mechanism forσphase,coupled with a high density of nano-twins and stacking faults in the matrix,contribute to the excellent mechanical properties at cryogenic and ambient temperatures.Moreover,the emergence of serratedσphase and micro-twins in the matrix plays a crucial role in the strengthening and toughening mechanisms at inter-mediate temperatures.This study offers a novel perspective and strategy for the development of precipitation-hardened Fe-Cr-Ni austen-itic alloys with exceptional strength-ductility synergy over a broad temperature range.展开更多
Catalytic doping is one of the economic and efficient strategies to optimize the operating temperature and kinetic behavior of magnesium hydride(MgH_(2)).Herein,efficient regulation of electronic and structural rearra...Catalytic doping is one of the economic and efficient strategies to optimize the operating temperature and kinetic behavior of magnesium hydride(MgH_(2)).Herein,efficient regulation of electronic and structural rearrangements in niobium-rich nickel oxides was achieved through precise compositional design and niobium cation functionalized doping,thereby greatly enhancing its intrinsic catalytic activity in hydrogen storage systems.As the niobium concentration increased,the Ni-Nb catalysts transformed into a mixed state of multi-phase nanoparticles(composed of nickel and niobium-rich nickel oxides)with smaller particle size and uniform distribution,thus exposing more nucleation sites and diffusion channels at the MgH_(2)/Mg interface.In addition,the additional generation of active Ni-Nb-O mixed phase induced numerous highly topical disordered and distorted crystalline,promoting the transfer and reorganization of H atoms.As a result,a stable and continuous multi-phase/component synergistic catalytic microenvironment could be constructed,exerting remarkable enhancement on MgH_(2)’s hydrogen storage performance.After comparative tests,Ni_(0.7)Nb_(0.3)-doped MgH_(2) presented the optimal low-temperature kinetics with a dehydrogenation activation energy of 78.8 kJ·mol^(−1).The onset dehydrogenation temperature of MgH_(2)+10 wt%Ni_(0.7)Nb_(0.3) was reduced to 198℃ and 6.18 wt%H_(2) could be released at 250℃ within 10 min.In addition,the dehydrogenated MgH_(2)–NiNb composites absorbed 4.87 wt%H_(2) in 10 min at 125℃ and a capacity retention rate was maintained at 6.18 wt%even after 50 reaction cycles.In a word,our work supplies fresh insights for designing novel defective-state multiphase catalysts for hydrogen storage and other energy related field.展开更多
Up to now,“Turn-on”fluorescence sensor exhibits promising potential toward the detection of heavy metal ions,anions,drugs,organic dyes,DNA,pesticides,and other amino acids due to their simple,quick detection,and hig...Up to now,“Turn-on”fluorescence sensor exhibits promising potential toward the detection of heavy metal ions,anions,drugs,organic dyes,DNA,pesticides,and other amino acids due to their simple,quick detection,and high sensitivity and selectivity.Herein,a novel fluorescence method of detecting Cr^(3+)in an aqueous solution was described based on the fluorescence resonance energy transfer between rhodamine B(Rh B)and gold nanoparticles(Au NPs).The fluorescence of Rh B solution could be obviously quenched(“off”state)with the presence of citrate-stabilized Au NPs.However,upon addition of Cr^(3+)to Au NPs@Rh B system,the fluorescence of Au NPs was recovered owing to the strong interaction between Cr^(3+)and the specific groups on the surface of citrate-stabilized Au NPs,which will lead to the aggregation of Au NPs(“on”state).At this point,the color of the reaction solution turned to black.Under optimal conditions,the limit of detection(LOD)for Cr^(3+)was 0.95 n M(signal-to-noise ratio,S/N=3)with a linear range of 0.164 n M to 3.270μM.Furthermore,the proposed method exhibits excellent performances,such as rapid analysis,high sensitivity,extraordinary selectivity,easy preparation,switch-on fluorescence response,and non-time consuming.展开更多
Metal-organic frameworks(MOFs)attract broad interests in mercury(Hg)ion adsorption field,while unreasonable distribution of active groups commonly restricts their utilization efficiency.In this work,we constructed a n...Metal-organic frameworks(MOFs)attract broad interests in mercury(Hg)ion adsorption field,while unreasonable distribution of active groups commonly restricts their utilization efficiency.In this work,we constructed a new MOF(TYUST-6)with dense thiol-rich traps in the 1D pore wall.This accessible channel and rational distribution of thiols allow the smooth diffusion of Hg ions and thereby result in a high Langmuir adsorption capacity of 1347.6 mg/g,almost reaching the theoretical maximum(1444.3 mg/g).Adsorption equilibrium needs 10 and 30 min at the initial concentrations of 10 and 100 mg/L,respectively.Common co-existing ions and solution pH show almost negligible interferences on the adsorption,and adsorbent regeneration can be well achieved.Combining experimental characterizations and theoretical calculations,the thiol groups in the pore wall are proved to be the dominant interaction sites.Thus,this work reports a novel high-capacity adsorbent for Hg^(2+),and proposes a feasible guideline for designing effective adsorbents.展开更多
Ferroptosis is a novel form of cell death driven by oxidative damage,and is implicated in various pathological conditions,including neurodegenerative diseases,retinal damage,and ischemia-reperfusion injury of organs.I...Ferroptosis is a novel form of cell death driven by oxidative damage,and is implicated in various pathological conditions,including neurodegenerative diseases,retinal damage,and ischemia-reperfusion injury of organs.Inhibiting ferroptosis has shown great promise as a therapeutic strategy for these diseases,underscoring the urgent need to develop effective ferroptosis inhibitors.Although Ferrostatin-1(Fer-1)is a potent ferroptosis inhibitor,its susceptibility to oxidation and metabolic inactivation limits its clinical utility.In this study,the accumulation of peroxides and the resulting oxidative damage in the cellular microenvironment during ferroptosis were utilized to design Ferrostatin-1 prodrugs with reactive oxygen species-responsive features.This approach led to the development of a series of ferroptosis inhibitors that were capable of recognizing oxidative damage in diseased areas,allowing for targeted release and improved stability.The novel compounds demonstrated significant inhibitory effects and selectivity against RSL-3-induced ferroptosis in HK-2 cells,with compound a1 exhibiting an EC50 of 15.4�0.7μM,outperforming Fer-1.These compounds effectively identify the oxidative microenvironment associated with ferroptosis,enabling the targeted release of Fer-1,which prevents lipid peroxide accumulation and inhibits ferroptosis.This strategy holds promise for treating diseases related to ferroptosis,offering a targeted and intelligent therapeutic approach.展开更多
基金supported by the National Natural Science Foundation of China(No.U1810208)Shanxi Province Science and Technology Major Projects,China(No.2018110100)。
文摘The nonuniform microstructure of magnesium alloy rolled sheets tends to influence their plastic deformation capacity.This study employed multi-pass restricted rolling to successfully prepare AZ31 magnesium alloy rolled sheets with a uniform microstructure,enhancing their mechanical properties.Quasi-in-situ tensile EBSD was used to investigate the effect of microstructure uniformity on the plastic deformation and fracture behavior of magnesium alloy.The results demonstrate that the nonuniformity of the magnesium alloy microstructure intensifies the strain asynchrony between adjacent grains,leading to relative misalignment and crack formation.Fine grains cannot coordinate the strain within their adjacent coarse grains,resulting in ledge formation at their common grain boundaries.Moreover,low-angle grain boundaries(LAGB)influence fracture behavior,rendering fine grains penetrated by LAGB more susceptible to becoming strain concentration areas that promote intergranular fracture and even transgranular fracture.
基金Project supported by the financial support from the National Key R&D Program of China(Grant No.2021YFB3201100)the National Natural Science Foundation of China(Grant No.52172128)the Top Young Talents Programme of Xi’an Jiaotong University.
文摘The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金supported by the National Key Research and Development Plan of the Ministry of Science and Technology,China(Grant No.:2022YFE0125300)the National Natural Science Foundation of China(Grant No:81690262)+2 种基金the National Science and Technology Major Project,China(Grant No.:2017ZX09201004-021)the Open Project of National facility for Translational Medicine(Shanghai),China(Grant No.:TMSK-2021-104)Shanghai Jiao Tong University STAR Grant,China(Grant Nos.:YG2022ZD024 and YG2022QN111).
文摘Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.
基金supported by Natural Science Foundation of Liaoning Province of China under Grant No.2020-MS-085。
文摘The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.
基金supported by the Open Fund of the Laboratory for Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,and the Cultivation Fund Program for Excellent Dissertation in Fujian Normal University,China(No.LWPYS202315)the Research Start-up Fund of Fujian Normal University,China(No.Y0720304X13).
文摘Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
基金Inner Mongolia Natural Science Foundation Project(2020LH05028)。
文摘Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.
基金financial support from the National Natural Science Foundation of China(No.51801078).
文摘To modify the stable thermodynamics and poor kinetics of magnesium hydride(MgH_(2))for solid-state hydrogen storage,MIL-100(Fe)was in situ fabricated on the surfaces of TiO_(2)nano-sheets(NS)by a self-assembly method,and the prepared TiO_(2)NS@MIL-100(Fe)presents an excellent catalytic effect on MgH_(2).The MgH_(2)+7wt.%TiO_(2)NS@MIL-100(Fe)composite can release hydrogen at 200℃,achieving a decrease of 150℃ compared to pure MgH_(2).Besides,the activation energy of dehydrogenation is decreased to 70.62 kJ/mol and 4 wt.%H_(2) can be desorbed within 20 min at a low temperature of 235℃.Under conditions of 100℃ and 3 MPa,MgH_(2)+7wt.%TiO_(2)NS@MIL-100(Fe)absorbs 5 wt.%of H_(2) in 10 min.Surprisingly,6.62 wt.%reversible capacity is maintained after 50 cycles.The modification mechanism is confirmed that the presence of oxygen vacancies and the synergistic effect of multivalent titanium in TiO_(2)NS@MIL-100(Fe)greatly enhance the kinetic and thermodynamic properties of MgH_(2).
基金supported by the National Natural Science Foundation of China(NSFC,No.62074048)the Key Research and Development Plan of Anhui Province(No.2022f04020007)the Natural Science Foundation of Anhui Province(No.2208085MF177)。
文摘In this study,we present the fabrication of vertical SnO/β-Ga_(2)O_(3) heterojunction diode(HJD)via radio frequency(RF)reactive magnetron sputtering.The valence and conduction band offsets betweenβ-Ga_(2)O_(3) and SnO are determined to be 2.65and 0.75 eV,respectively,through X-ray photoelectron spectroscopy,showing a type-Ⅱband alignment.Compared to its Schottky barrier diode(SBD)counterpart,the HJD presents a comparable specific ON-resistances(R_(on,sp))of 2.8 mΩ·cm^(2) and lower reverse leakage current(I_R),leading to an enhanced reverse blocking characteristics with breakdown voltage(BV)of 1675 V and power figure of merit(PFOM)of 1.0 GW/cm~2.This demonstrates the high quality of the SnO/β-Ga_(2)O_(3) heterojunction interface.Silvaco TCAD simulation further reveals that electric field crowding at the edge of anode for the SBD was greatly depressed by the introduction of SnO film,revealing the potential application of SnO/β-Ga_(2)O_(3) heterojunction in the futureβ-Ga_(2)O_(3)-based power devices.data mining,AI training,and similar technologies,are reserved.
基金supported by the National Natural Science Foundation of China(No.52005362)the Fundamental Research Program of Shanxi Province(Nos.202303021221005 and 202303021211045)+1 种基金the Patent Commercialization Program of Shanxi Province(No.202402003)the Key Research and Development Plan of Xinzhou City.
文摘Presetting tensile twins(TTs)can enhance the mechanical properties of magnesium(Mg)alloys.Two as-received(AR)sheets,as-received state-A(AR-A)with fiber texture and nonuniform grains and as-received state-B with basal texture and uniform equiaxial grains are selected to induce TTs via a novel method called corrugated wide limit alignment(CWLA),and the corresponding CWLA-processed sheets are denoted as CWLA-processed state-A(C-A)and CWLA-processed state-B(C-B).The results demonstrate that a larger initial average grain size correlates with a higher fraction of TTs induced in Mg sheets,thereby refining the grains and forming a new rolling direction(RD)tilted texture during CWLA.The ultimate tensile strength increases by 32%from AR-A to C-A,primarily due to refinement strengthening and twinning-induced strain hardening.The recrystallization mechanism of C-A is dominated by twinning-induced dynamic recrystallization(DRX),where DRX grains prefer to inherit the orientation of TTs,resulting in an enhanced RD-tilted texture and the formation of multi-modal texture.The recrystallization mechanism of C-B is mainly discontinuous DRX and continuous DRX,and the DRX grains prefer to inherit the orientation of matrix grains,ultimately forming a basal texture.In summary,the tensile mechanical behavior of pre-twinned Mg sheets significantly depends on the grain size and texture of the AR sheets,so they present similar changing trends during tensile deformation.
基金financial supports from the National Key R&D Program of China(No.2020YFA0406204)the National Natural Science Foundation of China(No.51801078)。
文摘Hydrogen,as a cheap,clean,and cost-effective secondary energy source,performs an essential role in optimizing today’s energy structure.Magnesium hydride(Mg H_(2))represents an attractive hydrogen carrier for storage and transportation,however,the kinetic behavior and operating temperature remain undesirable.In this work,a dual-phase multi-site alloy(Ms A)anchored on carbon substrates was designed,and its superior catalytic effects on the hydrogen storage properties of MgH_(2) were reported.Mechanism analysis identified that multi-site Fe Ni_(3)/Ni Cu nanoalloys synergistically served as intrinsic drivers for the striking de/hydrogenation performance of the MgH_(2)-Ms A systems.Concretely,the unique multi-metallic site structure attached to the surface of MgH_(2)provided substantial reversible channels and accessible active sites conducive to the adsorption,activation,and nucleation of H atoms.In addition,the coupling system formed by FeNi_(3) and NiCu dual-phase alloys further enhanced the reactivity between Mg/MgH_(2) and H atoms.Hence,the onset dehydrogenation temperature of Mg H_(2)+5 wt%Ms A was reduced to 195℃ and the hydrogen desorption apparent activation energy was reduced to 83.6 k J/mol.5.08 wt%H_(2) could be released at 250℃ in 20 min,reaching a high dehydrogenation rate of 0.254 wt%H_(2)/min,yet that for MgH_(2) at a higher temperature of 335℃ was only 0.145 wt%H_(2)/min.Then,the dehydrogenated Mg H_(2)-Ms A sample could absorb hydrogen from room temperature(30℃)and charge 3.93 wt%H_(2) at 100℃ within20 min under 3.0 MPa H_(2) pressure.Benefiting from carbon substrates,the 5 wt%Ms A doped-MgH_(2) could still maintain 6.36 wt%hydrogen capacity after 20 cycles.In conclusion,this work provides experimental rationale and new insights for the design of efficient catalysts for magnesium-based solid-state hydrogen storage materials.
基金supported by the National Natural Science Foundation of China(No.41877425)the Shanghai Municipal Natural Science Foundation,China(No.21ZR1446800)+4 种基金the State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution(No.GHBK-2022-005)the Key Lab of Eco-restoration of Regional Contaminated Environment(Shenyang University)Ministry of Education(No.KF-22-04)the Fundamental Research Funds for the Central Universities(No.2262022-00084)the open fund from the Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration(No.SHUES2022A04)。
文摘In-situ enhanced bioreduction by functional materials is a cost-effective technology to remove chlorinated hydrocarbons in groundwater.Herein,a novel polydopamine(PDA)-modified biochar(BC)-based composite containing nanoscale zero-valent iron(n ZVI)and poly-l-lactic acid(PLLA)(PB-PDA-Fe)was synthesized to enhance the removal of 1,1,1-trichloroethane(1,1,1-TCA)in simulated groundwater with actual site sediments.Its impact on functional microbial community structure in system was also investigated.The typical characterizations revealed uniform dispersion of PLA and n ZVI particles on the BC surface,being smoother after PDA coating.The composite exhibited a significantly higher performance on 1,1,1-TCA removal(82.38%,initial concentration 100 mg/L)than Fe-PDA and PB-PDA treatments.The diversity and richness of the microbial community in the composite treatment consistently decreased during incubation due to a synergistic effect between PLLA-BC and n ZVI.Desulfitobaterium,Pedobacter,Sphaerochaeta,Shewanella,and Clostridium were identified as enriched genera by the composite through DNA-stable isotope probing(DNA-SIP),playing a crucial role in the bioreductive dechlorination process.All the above results demonstrate that this novel composite selectively enhances the activity of microorganisms with extracellular respiration functions to efficiently dechlorinate 1,1,1-TCA.These findings could contribute to understanding the responsive microbial community by carbon-iron composites and expedite the application of in-situ enhanced bioreduction for effective remediation of chlorinated hydrocarbon-contaminated groundwater.
基金Project(52005362) supported by the National Natural Science Foundation of ChinaProjects(202303021221005,202303021211045) supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(202402003) supported by the Patent Commercialization Program of Shanxi Province,ChinaProject supported by the Key Research and Development Plan of Xinzhou City,China。
文摘The deformation behavior of hot-rolled AZ31 magnesium(Mg)alloy sheet was analyzed when subjected to uniaxial tension along its normal direction at temperatures ranging from 100 to 400℃and strain rates ranging from 0.5 to 100 mm/min.Based on the stress−strain curves and the dynamic material model,the hot processing map was established,which demonstrates that the power dissipation factor(η)is the most sensitive to strain rate at 400℃via absorption of dislocations.At 400℃,sample at 0.5 mm/min possessesηof 0.89 because of its lower kernel average misorientation(KAM)value of 0.51,while sample at 100 mm/min possessesηof 0.46 with a higher KAM value of 1.147.In addition,the flow stress presents a slight decrease of 25.94 MPa at 10 mm/min compared to that at 100 mm/min and 100℃.The reasons are twofold:a special~34°texture component during 100℃-100 mm/min favoring the activation of basal slip,and dynamic recrystallization(DRX)also providing softening effect to some extent by absorbing dislocations.Difference in activation of basal slip among twin laminas during 100℃-100 mm/min results in deformation inhomogeneity within the grains,which generates stress that helps matrix grains tilt to a direction favorable to basal slip,forming the special~34°texture component.
基金supports from the National Key R&D Program of China(2020YFA0406204)the National Natural Science Foundation of China(Grant No 51801078).
文摘Catalytic doping of magnesium hydride(MgH_(2))to improve its hydrogen ab/desorption kinetic properties is considered to be an effective and feasible method.In solid-phase catalysis,the extent of contact between the catalyst and the substrate determines the catalytic reaction in a great sense.With large specific surface area and abundant active sites,two-dimensional(2D)nanomaterials are promising catalysts for MgH_(2)via providing numerous pathways for the diffusion and dissociation of hydrogen.In this regard,2D NiMn-based layered double hydroxide and layered metallic oxide(LMO)are designed and introduced into MgH_(2)to improve its hydrogen storage properties.Simultaneous enhancement in interfacial contact,desorption temperature and kinetics are achieved.The MgH_(2)+9wt%Ni3Mn-LMO composites begin to discharge hydrogen at only 190℃and 6.10wt%H_(2)could be charged in 600 s at 150℃.The activation energy for de/hydrogenation is reduced by 42.43%and 46.56%,respectively,compared to pure MgH_(2).Even at a low operating temperature of 235℃,the modified system was still able to release 4.44wt%H_(2)in an hour,which has rarely been reported in previous studies.Microstructure observations and density functional theory calculations revealed that first,the hydrogen pumping effect of Mg_(2)Ni/Mg_(2)NiH_(4) promotes the adsorption and desorption of hydrogen molecules on the surface of MgH_(2),second,MnOx drew electrons from Mg_(2)Ni,producing a new Density of State structure with a lower d-bond center.This unique change further strengthens the Mg_(2)Ni/Mg_(2)NiH_(4) pump effect on MgH_(2).Our work indicates that the application of 2D metal-based catalysts is a feasible and promising approach towards MgH_(2)for solid-state hydrogen storage to meet technical and scientific requirements.
基金supported by the National Natural Science Foundation of China(Nos.12072220,12102291,and 12225207)the Science and Technology Innovation Teams of Shanxi Province,China(No.202204051002006)the Central Guidance on Local Science and Technology Development Fund of Shanxi Province,China(No.YDZJSX2021B002).
文摘Fe-Cr-Ni austenitic alloys are extensively utilized in the hot-end components of nuclear light water reactors,turbine disks,and gas compressors.However,their low strength at elevated temperatures limits their engineering applications.In this study,a novel precipit-ation-strengthened alloy system is developed by incorporating Al and Si elements into a FeCrNi equiatomic alloy.The results indicate that the FeCrNiAl_(x)Si_(x)(at%,x=0.1,0.2)alloys possess heterogeneous precipitation structures that feature a micron-scaleσphase at the grain boundaries and a nanoscale ordered body-centered cube(B2)phase within the grains.An exceptional strength-ductility synergy across a wide temperature range is achieved in FeCrNiAl_(0.1)Si_(0.1)alloys due to grain refinement and precipitation strengthening.Notably,a yield strength of 693.83 MPa,an ultimate tensile strength of 817.55 MPa,and a uniform elongation of 18.27%are attained at 873 K.The dislo-cation shearing mechanism for B2 phases and the Orowan bypass mechanism forσphase,coupled with a high density of nano-twins and stacking faults in the matrix,contribute to the excellent mechanical properties at cryogenic and ambient temperatures.Moreover,the emergence of serratedσphase and micro-twins in the matrix plays a crucial role in the strengthening and toughening mechanisms at inter-mediate temperatures.This study offers a novel perspective and strategy for the development of precipitation-hardened Fe-Cr-Ni austen-itic alloys with exceptional strength-ductility synergy over a broad temperature range.
基金financial supports from the National Key R&D Program of China(2023YFB3809103)the National Natural Science Foundation of China(U23A20128).
文摘Catalytic doping is one of the economic and efficient strategies to optimize the operating temperature and kinetic behavior of magnesium hydride(MgH_(2)).Herein,efficient regulation of electronic and structural rearrangements in niobium-rich nickel oxides was achieved through precise compositional design and niobium cation functionalized doping,thereby greatly enhancing its intrinsic catalytic activity in hydrogen storage systems.As the niobium concentration increased,the Ni-Nb catalysts transformed into a mixed state of multi-phase nanoparticles(composed of nickel and niobium-rich nickel oxides)with smaller particle size and uniform distribution,thus exposing more nucleation sites and diffusion channels at the MgH_(2)/Mg interface.In addition,the additional generation of active Ni-Nb-O mixed phase induced numerous highly topical disordered and distorted crystalline,promoting the transfer and reorganization of H atoms.As a result,a stable and continuous multi-phase/component synergistic catalytic microenvironment could be constructed,exerting remarkable enhancement on MgH_(2)’s hydrogen storage performance.After comparative tests,Ni_(0.7)Nb_(0.3)-doped MgH_(2) presented the optimal low-temperature kinetics with a dehydrogenation activation energy of 78.8 kJ·mol^(−1).The onset dehydrogenation temperature of MgH_(2)+10 wt%Ni_(0.7)Nb_(0.3) was reduced to 198℃ and 6.18 wt%H_(2) could be released at 250℃ within 10 min.In addition,the dehydrogenated MgH_(2)–NiNb composites absorbed 4.87 wt%H_(2) in 10 min at 125℃ and a capacity retention rate was maintained at 6.18 wt%even after 50 reaction cycles.In a word,our work supplies fresh insights for designing novel defective-state multiphase catalysts for hydrogen storage and other energy related field.
基金supported by the Natural Science Foundation of Qinghai Province in China(No.2019-ZJ-944Q)the University-level Planning Project of Qinghai Minzu University of Qinghai Province in China(Nos.2022GH11 and 2022GH13)。
文摘Up to now,“Turn-on”fluorescence sensor exhibits promising potential toward the detection of heavy metal ions,anions,drugs,organic dyes,DNA,pesticides,and other amino acids due to their simple,quick detection,and high sensitivity and selectivity.Herein,a novel fluorescence method of detecting Cr^(3+)in an aqueous solution was described based on the fluorescence resonance energy transfer between rhodamine B(Rh B)and gold nanoparticles(Au NPs).The fluorescence of Rh B solution could be obviously quenched(“off”state)with the presence of citrate-stabilized Au NPs.However,upon addition of Cr^(3+)to Au NPs@Rh B system,the fluorescence of Au NPs was recovered owing to the strong interaction between Cr^(3+)and the specific groups on the surface of citrate-stabilized Au NPs,which will lead to the aggregation of Au NPs(“on”state).At this point,the color of the reaction solution turned to black.Under optimal conditions,the limit of detection(LOD)for Cr^(3+)was 0.95 n M(signal-to-noise ratio,S/N=3)with a linear range of 0.164 n M to 3.270μM.Furthermore,the proposed method exhibits excellent performances,such as rapid analysis,high sensitivity,extraordinary selectivity,easy preparation,switch-on fluorescence response,and non-time consuming.
基金supported by the National Natural Science Foundation of China(No.22208230)Fundamental Research Program of Shanxi Province(No.202103021223281)。
文摘Metal-organic frameworks(MOFs)attract broad interests in mercury(Hg)ion adsorption field,while unreasonable distribution of active groups commonly restricts their utilization efficiency.In this work,we constructed a new MOF(TYUST-6)with dense thiol-rich traps in the 1D pore wall.This accessible channel and rational distribution of thiols allow the smooth diffusion of Hg ions and thereby result in a high Langmuir adsorption capacity of 1347.6 mg/g,almost reaching the theoretical maximum(1444.3 mg/g).Adsorption equilibrium needs 10 and 30 min at the initial concentrations of 10 and 100 mg/L,respectively.Common co-existing ions and solution pH show almost negligible interferences on the adsorption,and adsorbent regeneration can be well achieved.Combining experimental characterizations and theoretical calculations,the thiol groups in the pore wall are proved to be the dominant interaction sites.Thus,this work reports a novel high-capacity adsorbent for Hg^(2+),and proposes a feasible guideline for designing effective adsorbents.
基金supported by the Natural Science Foundation of Liaoning Province(2023-MSBA-020)the Fundamental Research Funds for Central Universities(DUT24MS020)Science and Technology Innovation Fund of Dalian(2022JJ13SN073).
文摘Ferroptosis is a novel form of cell death driven by oxidative damage,and is implicated in various pathological conditions,including neurodegenerative diseases,retinal damage,and ischemia-reperfusion injury of organs.Inhibiting ferroptosis has shown great promise as a therapeutic strategy for these diseases,underscoring the urgent need to develop effective ferroptosis inhibitors.Although Ferrostatin-1(Fer-1)is a potent ferroptosis inhibitor,its susceptibility to oxidation and metabolic inactivation limits its clinical utility.In this study,the accumulation of peroxides and the resulting oxidative damage in the cellular microenvironment during ferroptosis were utilized to design Ferrostatin-1 prodrugs with reactive oxygen species-responsive features.This approach led to the development of a series of ferroptosis inhibitors that were capable of recognizing oxidative damage in diseased areas,allowing for targeted release and improved stability.The novel compounds demonstrated significant inhibitory effects and selectivity against RSL-3-induced ferroptosis in HK-2 cells,with compound a1 exhibiting an EC50 of 15.4�0.7μM,outperforming Fer-1.These compounds effectively identify the oxidative microenvironment associated with ferroptosis,enabling the targeted release of Fer-1,which prevents lipid peroxide accumulation and inhibits ferroptosis.This strategy holds promise for treating diseases related to ferroptosis,offering a targeted and intelligent therapeutic approach.