A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to pro...A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).展开更多
文摘A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).