This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog...This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog code by more than a factor of 5, increase the efficiency of the front-end design, reduce the bug rate significantly. This tool can be used to enhance the reusability of an intellectual property model, and facilitate porting design for different platforms.展开更多
With the increased design complexities brought in by applying different Reticle Enhancement Technologies (RETs) in nanometer-scale IC manufacturing process, post-RET sign-off verification is quickly becoming necessary...With the increased design complexities brought in by applying different Reticle Enhancement Technologies (RETs) in nanometer-scale IC manufacturing process, post-RET sign-off verification is quickly becoming necessary. By introducing innovative algorithms for lithographic modeling, silicon imaging and yield problem locating, this paper describes a new methodology of IC manufacturability verification based on Dense Silicon Imaging (DSI). Necessity of imaging based verification is analyzed. Existing post-RET verification methods are reviewed and compared to the new methodology. Due to the greatly improved computational efficiency produced by algorithms such as the ~16*log2N/log2M times faster Specialized FFT, DSI based manufacturability checks on full IC scale, which were impractical for applications before, are now realized. Real verification example has been demonstrated and studied as well.展开更多
文摘This paper describes an in-house developed language tool called VPerl used in developing a 250 MHz 32-bit high-performance low power embedded CPU core. The authors showed that use of this tool can compress the Verilog code by more than a factor of 5, increase the efficiency of the front-end design, reduce the bug rate significantly. This tool can be used to enhance the reusability of an intellectual property model, and facilitate porting design for different platforms.
基金the National Natural Science Foundation of China(Grant Nos.60176015 , 90207002) the Hi—Tech R&D(863)Program of China(Grant Nos.2002AA1Z1460 , 2003AA1Z1370).
文摘With the increased design complexities brought in by applying different Reticle Enhancement Technologies (RETs) in nanometer-scale IC manufacturing process, post-RET sign-off verification is quickly becoming necessary. By introducing innovative algorithms for lithographic modeling, silicon imaging and yield problem locating, this paper describes a new methodology of IC manufacturability verification based on Dense Silicon Imaging (DSI). Necessity of imaging based verification is analyzed. Existing post-RET verification methods are reviewed and compared to the new methodology. Due to the greatly improved computational efficiency produced by algorithms such as the ~16*log2N/log2M times faster Specialized FFT, DSI based manufacturability checks on full IC scale, which were impractical for applications before, are now realized. Real verification example has been demonstrated and studied as well.