In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperatur...In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperature and precipitation in China change in phase with AO. High positive correlation (>0.4) between temperature and AO appears in the northern China. High correlation coefficients between precipitation and AO cover the southern China (close to the South China Sea) and the central China (between 30 o -40 o N and east of ~100 o E), with the values varying between +0.3 and +0.4. It is found that during the past several decades the precipitation was strongly affected by AO, but for the temperature the Siberian High plays a more important role. At the interdecadal time scale the AO has significant influence on both temperature and precipitation. Multivariate regression analysis demonstrates that AO and the Siberian High related variance in temperature and precipitation is 35% and 11% respectively. For precipitation, however the portion is rather low, implying that some other factors may be responsible for the changes in precipitation, in addition to AO and the Siberian High.展开更多
Climate extremes for agriculture-pasture transitional zone, northern China, are analyzed on the basis of daily mean temperature and precipitation observations for 31 stations in the period 1956-2001. Analysis season f...Climate extremes for agriculture-pasture transitional zone, northern China, are analyzed on the basis of daily mean temperature and precipitation observations for 31 stations in the period 1956-2001. Analysis season for precipitation is May-September, i.e., the rainy season. For temperature is the hottest three months, i.e., June through August. Heavy rain events, defined as those with daily precipitation equal to or larger than 50 mm, show no significant secular trend. A jump-like change, however, is found occurring in about 1980. For the period 1980-1993, the frequency of heavy rain events is significantly lower than the previous periods. Simultaneously, the occurring time of heavy rains expanded, commencing about one month early and ending one month later. Long dry spells are defined as those with longer than 10 days without rainfall. The frequency of long dry spells displays a significant (at the 99% confidence level) trend at the value of +8.3% /10a. That may be one of the major causes of the frequent droughts emerging over northern China during the last decades. Extremely hot and low temperature events are defined as the uppermost 10% daily temperatures and the lowest 10% daily temperatures, respectively. There is a weak and non-significant upward trend in frequency of extremely high temperatures from the 1950s to the mid-1990s. But the number of hot events increases as much as twice since 1997. That coincides well with the sudden rise in mean summer temperature for the same period. Contrary to that, the frequency of low temperature events have been decreasing steadily since the 1950s, with a significant linear trend of-15%/10a.展开更多
Plant life form diversity and its direct gradient analysis on a larger scale climate change gradient were tested, based on the data from Northeast China Transect platform. The results showed that the species numbers, ...Plant life form diversity and its direct gradient analysis on a larger scale climate change gradient were tested, based on the data from Northeast China Transect platform. The results showed that the species numbers, life form richness and life form diversity were relative higher at the eastern forests and the ecotone between typical vegetation, while those on the meadow grasslands and typical steppes were lower. Although plant life forms can reflect the climate variations, life form diversity is not consistent with the major global gradient along the NECT.展开更多
Yulin section is a typical sedimentary record for reflecting the environmental evolution of Ordos Desert, China in the past 1.1Ma. By analyzing its sequence and grain-size composition some views have been put forward ...Yulin section is a typical sedimentary record for reflecting the environmental evolution of Ordos Desert, China in the past 1.1Ma. By analyzing its sequence and grain-size composition some views have been put forward in this paper as follows. The layers of sand, loess and palaeosol in Yulin section were respectively formed by wind and the pedogenesis on parent material of the sand and loess. Since 1.1Ma B. P., Ordos Desert has alternately experienced 11 stages of shifting dunes under extreme cold-dry climatic environment, 7 stages of fixed and semi-fixed dunes and 8 stages of dust (loess) under cold-dry climatic condition; and the pedogenesis environment under 15 times of warm-humid climate and 3 times of temperate-humid climate (brownish-drab soils and black soils formed respectively). The aeolian sand had already existed in Ordos Desert at latest by 1.1Ma B. P., and from that time on it has undergone a series of alternative processes of shifting sands, fixed and semi-fixed dunes, loess and soils. Ordos Desert has been situated in the transitional belt of the Mongolian High Pressure and margin of the southeast summer monsoon since 1.1Ma B. P., and influenced repeatedly by migration of the lithofacies belts of shifting sands, fixed and semi-fixed dunes, loess and soils, which have been caused by the climatic fluctuations of glacial and interglacial periods.展开更多
基金The Excellent Young Teachers Program of MOE No.EYTP-1964+1 种基金 National Natural Science Foundation of China No.NSFC-40105007
文摘In this study the relationship between the Arctic Oscillation (AO) and climate in China in boreal winter are investigated. Correlation analysis for the last 41 years shows that the winter temperature and precipitation in China change in phase with AO. High positive correlation (>0.4) between temperature and AO appears in the northern China. High correlation coefficients between precipitation and AO cover the southern China (close to the South China Sea) and the central China (between 30 o -40 o N and east of ~100 o E), with the values varying between +0.3 and +0.4. It is found that during the past several decades the precipitation was strongly affected by AO, but for the temperature the Siberian High plays a more important role. At the interdecadal time scale the AO has significant influence on both temperature and precipitation. Multivariate regression analysis demonstrates that AO and the Siberian High related variance in temperature and precipitation is 35% and 11% respectively. For precipitation, however the portion is rather low, implying that some other factors may be responsible for the changes in precipitation, in addition to AO and the Siberian High.
文摘Climate extremes for agriculture-pasture transitional zone, northern China, are analyzed on the basis of daily mean temperature and precipitation observations for 31 stations in the period 1956-2001. Analysis season for precipitation is May-September, i.e., the rainy season. For temperature is the hottest three months, i.e., June through August. Heavy rain events, defined as those with daily precipitation equal to or larger than 50 mm, show no significant secular trend. A jump-like change, however, is found occurring in about 1980. For the period 1980-1993, the frequency of heavy rain events is significantly lower than the previous periods. Simultaneously, the occurring time of heavy rains expanded, commencing about one month early and ending one month later. Long dry spells are defined as those with longer than 10 days without rainfall. The frequency of long dry spells displays a significant (at the 99% confidence level) trend at the value of +8.3% /10a. That may be one of the major causes of the frequent droughts emerging over northern China during the last decades. Extremely hot and low temperature events are defined as the uppermost 10% daily temperatures and the lowest 10% daily temperatures, respectively. There is a weak and non-significant upward trend in frequency of extremely high temperatures from the 1950s to the mid-1990s. But the number of hot events increases as much as twice since 1997. That coincides well with the sudden rise in mean summer temperature for the same period. Contrary to that, the frequency of low temperature events have been decreasing steadily since the 1950s, with a significant linear trend of-15%/10a.
文摘Plant life form diversity and its direct gradient analysis on a larger scale climate change gradient were tested, based on the data from Northeast China Transect platform. The results showed that the species numbers, life form richness and life form diversity were relative higher at the eastern forests and the ecotone between typical vegetation, while those on the meadow grasslands and typical steppes were lower. Although plant life forms can reflect the climate variations, life form diversity is not consistent with the major global gradient along the NECT.
基金Undertheauspices of the National Basic Research Program of China(No. 2004CB720206) and theproject of Chin-ese AcademyofSciences (No. KZCX2-SW-118)
文摘Yulin section is a typical sedimentary record for reflecting the environmental evolution of Ordos Desert, China in the past 1.1Ma. By analyzing its sequence and grain-size composition some views have been put forward in this paper as follows. The layers of sand, loess and palaeosol in Yulin section were respectively formed by wind and the pedogenesis on parent material of the sand and loess. Since 1.1Ma B. P., Ordos Desert has alternately experienced 11 stages of shifting dunes under extreme cold-dry climatic environment, 7 stages of fixed and semi-fixed dunes and 8 stages of dust (loess) under cold-dry climatic condition; and the pedogenesis environment under 15 times of warm-humid climate and 3 times of temperate-humid climate (brownish-drab soils and black soils formed respectively). The aeolian sand had already existed in Ordos Desert at latest by 1.1Ma B. P., and from that time on it has undergone a series of alternative processes of shifting sands, fixed and semi-fixed dunes, loess and soils. Ordos Desert has been situated in the transitional belt of the Mongolian High Pressure and margin of the southeast summer monsoon since 1.1Ma B. P., and influenced repeatedly by migration of the lithofacies belts of shifting sands, fixed and semi-fixed dunes, loess and soils, which have been caused by the climatic fluctuations of glacial and interglacial periods.