期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Neural Network Ensemble Residual Kriging Application for Spatial Variability of Soil Properties 被引量:37
1
作者 SHENZhang-Quan SHIJie-Bin +2 位作者 WANGKe KONGFan-Sheng J.S.BAILEY 《Pedosphere》 SCIE CAS CSCD 2004年第3期289-296,共8页
High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the c... High quality, agricultural nutrient distribution maps are necessary for precision management, but depend on initial soil sample analyses and interpolation techniques. To examine the methodologies for and explore the capability of interpolating soil properties based on neural network ensemble residual kriging, a silage field at Hayes, Northern Ireland, UK, was selected for this study with all samples being split into independent training and validation data sets. The training data set, comprised of five soil properties: soil pH, soil available P, soil available K, soil available Mg and soil available S,was modeled for spatial variability using 1) neural network ensemble residual kriging, 2) neural network ensemble and 3) kriging with their accuracies being estimated by means of the validation data sets. Ordinary kriging of the residuals provided accurate local estimates, while final estimates were produced as a sum of the artificial neural network (ANN)ensemble estimates and the ordinary kriging estimates of the residuals. Compared to kriging and neural network ensemble,the neural network ensemble residual kriging achieved better or similar accuracy for predicting and estimating contour maps. Thus, the results demonstrated that ANN ensemble residual kriging was an efficient alternative to the conventional geo-statistical models that were usually used for interpolation of a data set in the soil science area. 展开更多
关键词 KRIGING neural networks ensemble RESIDUAL soil properties SPATIALVARIABILITY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部