The effect of β-cyclodextrins(β-CDs) on the enzymatical hydrolysis of chiral dichlorprop methyl ester (DCPPM) was studied. Four kinds of β-cyclodextrins(β-cyclodextrin, Partly methylated-CD(PM-β-CD), hydroxyprop...The effect of β-cyclodextrins(β-CDs) on the enzymatical hydrolysis of chiral dichlorprop methyl ester (DCPPM) was studied. Four kinds of β-cyclodextrins(β-cyclodextrin, Partly methylated-CD(PM-β-CD), hydroxypropyl-cyclodextrin(HP-β-CD) and carboxymethyl-cyclodextrin(CM-β-CD)) were used. Compared with 100% DCPPM in the absence of β-cyclodextrins, the activity of lipase decreased with the increase of β-cyclodextrin and PM-β-cyclodextrin. However, CM-β-cyclodextrin stimulated the lipase activity. The inhibition effect of β-cyclodextrin and PM-β-cyclodextrin on the hydrolysis of DCPPM is affected by many factors other than degree of the methylation blocking the active site of lipase. UV-Vis and Fourier transform infrared(FTIR) spectroscopy studies of the complexation of aqueous DCPPM with β-CDs provide fresh insight into the molecular structure of the complex and explain the effects of β-CDs on enzymatical hydrolysis of chiral DCPPM. Data showed that inclusion complexes had formed by complexation of the CM-β-CD with DCPPM and the solubility of DCPPM was increased in water, which leaded to the increased lipase activity.展开更多
Hydrolytic degradation of the herbicide diclofop methyl was investigated in the multi pH deionized water, natural aquatic systems and soil suspensions. Resulting data indicated that the herbicide was stable in the aci...Hydrolytic degradation of the herbicide diclofop methyl was investigated in the multi pH deionized water, natural aquatic systems and soil suspensions. Resulting data indicated that the herbicide was stable in the acidic and nearly neutral solutions for at least 15 d. The herbicide diclofop methyl rapidly dissipated in the natural aquatic systems and soil suspensions with half lives less than 4 d. Methyl CD(partially methylated β cyclodextrin) improved its hydrolytic degradation in the pH 8 deionized water and natural aquatic systems while humic acid inhibited its hydrolytic degradation at the same conditions. But dissolved organic matter in the natural aquatic systems and soil suspensions increased its hydrolysis. Two catalysis mechanisms were introduced to describe the effects of cyclodextrin and organic matter on its hydrolytic metabolism. Though inorganic ions maybe improved its hydrolysis reaction in the natural aquatic systems, Fe 2+ and Cu 2+ did not form complexes with the herbicide and had poor influences on its hydrolytic degradation whether cyclodextrin was added or not.展开更多
文摘The effect of β-cyclodextrins(β-CDs) on the enzymatical hydrolysis of chiral dichlorprop methyl ester (DCPPM) was studied. Four kinds of β-cyclodextrins(β-cyclodextrin, Partly methylated-CD(PM-β-CD), hydroxypropyl-cyclodextrin(HP-β-CD) and carboxymethyl-cyclodextrin(CM-β-CD)) were used. Compared with 100% DCPPM in the absence of β-cyclodextrins, the activity of lipase decreased with the increase of β-cyclodextrin and PM-β-cyclodextrin. However, CM-β-cyclodextrin stimulated the lipase activity. The inhibition effect of β-cyclodextrin and PM-β-cyclodextrin on the hydrolysis of DCPPM is affected by many factors other than degree of the methylation blocking the active site of lipase. UV-Vis and Fourier transform infrared(FTIR) spectroscopy studies of the complexation of aqueous DCPPM with β-CDs provide fresh insight into the molecular structure of the complex and explain the effects of β-CDs on enzymatical hydrolysis of chiral DCPPM. Data showed that inclusion complexes had formed by complexation of the CM-β-CD with DCPPM and the solubility of DCPPM was increased in water, which leaded to the increased lipase activity.
文摘Hydrolytic degradation of the herbicide diclofop methyl was investigated in the multi pH deionized water, natural aquatic systems and soil suspensions. Resulting data indicated that the herbicide was stable in the acidic and nearly neutral solutions for at least 15 d. The herbicide diclofop methyl rapidly dissipated in the natural aquatic systems and soil suspensions with half lives less than 4 d. Methyl CD(partially methylated β cyclodextrin) improved its hydrolytic degradation in the pH 8 deionized water and natural aquatic systems while humic acid inhibited its hydrolytic degradation at the same conditions. But dissolved organic matter in the natural aquatic systems and soil suspensions increased its hydrolysis. Two catalysis mechanisms were introduced to describe the effects of cyclodextrin and organic matter on its hydrolytic metabolism. Though inorganic ions maybe improved its hydrolysis reaction in the natural aquatic systems, Fe 2+ and Cu 2+ did not form complexes with the herbicide and had poor influences on its hydrolytic degradation whether cyclodextrin was added or not.