The 10 920 stress indicators collected so far by the WSM (World Stress Map) project represent the observed ori-entations of the maximum horizontal principal stress (sHmax) in a certain region. Assuming that the long-w...The 10 920 stress indicators collected so far by the WSM (World Stress Map) project represent the observed ori-entations of the maximum horizontal principal stress (sHmax) in a certain region. Assuming that the long-wave component of sHmax is expressed by the absolute direction of plate motions, we can get the relative orientation and the magnitude of the short-wave component resulted from the local tectonic process or other factors with vector analytical technique. The global surface was divided into basic element bins by 2.52.5 dimensions and the WSM indicators were statistically analyzed for each element by weight coefficient method in order to determine the mean orientation of the stress. We calculated the long-wave component of the global stress field using HS2-NUVEL1 model. The relative magnitude or the direction limitation of short-wave component, which reflect the local contribution to the observed stresses, was determined by the angle between the mean sHmax and the orien-tation of the long-wave component. The results of this paper show that the contribution of either the long-wave component or the short-wave component is approximately equal to most of the global plates on the basis of the mean effect of the observed stresses. For some of continental regions, the local active tectonics plays an important role in the observed stresses and controls the generation and occurrence of earthquakes.展开更多
The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin f...The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data, the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces(T 1, T 2 and T 3)have developed since 16ka BP, where T 1, T 3 and T 2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12.8ka BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B.P to 6.2ka BP, The uplift rate was 6.4mm/a. The uplift rate is 3.1mm/a since 6.2ka BP. At Changcaogou, four levels of stream terraces(T 1, T 2, T 3 and T 1′)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T 3 and T 2 and the minor strath on T 1′and T 1. The ages of treads of the three terraces (T 3, T 2 and T 1′) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.9mm/a since 7.0 ka BP at Changcaogou. From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.展开更多
A brand new expert system for earthquake prediction, called ESEP3.0, was successfully developed recently, in which the fuzzy technology and neural network conception were incorporated and the steering inference mechan...A brand new expert system for earthquake prediction, called ESEP3.0, was successfully developed recently, in which the fuzzy technology and neural network conception were incorporated and the steering inference mechanism was introduced. In addition to the functions of symbol inference and explanation of the first generation of the expert system and the knowledge learning of the second generation, ESEP3.0 has stronger human-machine interaction function. It consists of knowledge edition, machine learning, steering fuzzy inference engine and synchronous explanation subsystems. In this paper, the components and the general description of the system are introduced.展开更多
Seismic images of the mantle beneath the active Changbai intraplate volcano in Northeast China determined by teleseismic travel time tomography are presented. The data are measured at a new seismic network consisting ...Seismic images of the mantle beneath the active Changbai intraplate volcano in Northeast China determined by teleseismic travel time tomography are presented. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. The results show a columnar low-velocity (-3%) anomaly extending to 400 km depth under the Changbai volcano. High velocity anomalies are visible in the mantle transition zone, and deep earthquakes occur at depths of 500--600 km under the region,suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly also by global tomography.These results suggest that the Changbai intraplate volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the upwelling of hot asthenospheric materials associated with the deep subduction and stagnancy of the Pacific slab under northeast Asia.展开更多
基金MOST contract of 2001BA601B02 and State Natural Science Foundation of China (49804006).
文摘The 10 920 stress indicators collected so far by the WSM (World Stress Map) project represent the observed ori-entations of the maximum horizontal principal stress (sHmax) in a certain region. Assuming that the long-wave component of sHmax is expressed by the absolute direction of plate motions, we can get the relative orientation and the magnitude of the short-wave component resulted from the local tectonic process or other factors with vector analytical technique. The global surface was divided into basic element bins by 2.52.5 dimensions and the WSM indicators were statistically analyzed for each element by weight coefficient method in order to determine the mean orientation of the stress. We calculated the long-wave component of the global stress field using HS2-NUVEL1 model. The relative magnitude or the direction limitation of short-wave component, which reflect the local contribution to the observed stresses, was determined by the angle between the mean sHmax and the orien-tation of the long-wave component. The results of this paper show that the contribution of either the long-wave component or the short-wave component is approximately equal to most of the global plates on the basis of the mean effect of the observed stresses. For some of continental regions, the local active tectonics plays an important role in the observed stresses and controls the generation and occurrence of earthquakes.
文摘The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data, the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces(T 1, T 2 and T 3)have developed since 16ka BP, where T 1, T 3 and T 2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12.8ka BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B.P to 6.2ka BP, The uplift rate was 6.4mm/a. The uplift rate is 3.1mm/a since 6.2ka BP. At Changcaogou, four levels of stream terraces(T 1, T 2, T 3 and T 1′)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T 3 and T 2 and the minor strath on T 1′and T 1. The ages of treads of the three terraces (T 3, T 2 and T 1′) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.9mm/a since 7.0 ka BP at Changcaogou. From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.
文摘A brand new expert system for earthquake prediction, called ESEP3.0, was successfully developed recently, in which the fuzzy technology and neural network conception were incorporated and the steering inference mechanism was introduced. In addition to the functions of symbol inference and explanation of the first generation of the expert system and the knowledge learning of the second generation, ESEP3.0 has stronger human-machine interaction function. It consists of knowledge edition, machine learning, steering fuzzy inference engine and synchronous explanation subsystems. In this paper, the components and the general description of the system are introduced.
文摘Seismic images of the mantle beneath the active Changbai intraplate volcano in Northeast China determined by teleseismic travel time tomography are presented. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. The results show a columnar low-velocity (-3%) anomaly extending to 400 km depth under the Changbai volcano. High velocity anomalies are visible in the mantle transition zone, and deep earthquakes occur at depths of 500--600 km under the region,suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly also by global tomography.These results suggest that the Changbai intraplate volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the upwelling of hot asthenospheric materials associated with the deep subduction and stagnancy of the Pacific slab under northeast Asia.