Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust...Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust position estimation method based on bootstrapping M-estimation and Huber estimator are proposed to mitigate the effects of NLOS propagation on the location error. Simulation results show the improvement over traditional Least-Square (LS)algorithm on location accuracy under different channel environments.展开更多
Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel base...Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.展开更多
文摘Caused by Non-Line-Of-Sight (NLOS) propagation effect, the non-symmetric contamination of measured Time Of Arrival (TOA) data leads to high inaccuracies of the conventional TOA based mobile location techniques. Robust position estimation method based on bootstrapping M-estimation and Huber estimator are proposed to mitigate the effects of NLOS propagation on the location error. Simulation results show the improvement over traditional Least-Square (LS)algorithm on location accuracy under different channel environments.
文摘Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.