期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update 被引量:4
1
作者 胡振涛 Fu Chunling +1 位作者 Cao Zhiwei Li Congcong 《High Technology Letters》 EI CAS 2015年第1期39-45,共7页
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it... Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm. 展开更多
关键词 maneuvering target tracking nonlinear filtering cubature Kalman filter(CKF) interacting multiple model(IMM)
在线阅读 下载PDF
Maneuvering target tracking algorithm based on CDKF in observation bootstrapping strategy 被引量:1
2
作者 胡振涛 Zhang Jin +1 位作者 Fu Chunling Li Xian 《High Technology Letters》 EI CAS 2017年第2期149-155,共7页
The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a nov... The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed.The framework of interactive multiple model(IMM) is used to realize identification of motion pattern,and a central difference Kalman filter(CDKF) is selected as the model filter of IMM.Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information,the hardware cost of the observation system for multiple sensors is adopted,meanwhile,according to the data assimilation technique in Ensemble Kalman filter(En KF),a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise.On that basis,these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way.The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors.The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 maneuvering target tracking interacting multiple model(IMM) central difference Kalman filter(CDKF) bootstrapping observation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部