期刊文献+
共找到1,414篇文章
< 1 2 71 >
每页显示 20 50 100
UV-assisted ratiometric fiuorescence sensor for one-pot visual detection of Salmonella 被引量:1
1
作者 Ren Shen Yanmei Fang +4 位作者 Chunxiao Yang Quande Wei Pui-In Mak Rui P.Martins Yanwei Jia 《Chinese Chemical Letters》 2025年第4期593-599,共7页
Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detec... Rapid diagnosis of Salmonella is crucial for the effective control of food safety incidents, especially in regions with poor hygiene conditions. Polymerase chain reaction(PCR), as a promising tool for Salmonella detection, is facing a lack of simple and fast sensing methods that are compatible with field applications in resource-limited areas. In this work, we developed a sensing approach to identify PCR-amplified Salmonella genomic DNA with the naked eye in a snapshot. Based on the ratiometric fiuorescence signals from SYBR Green Ⅰ and Hydroxyl naphthol blue, positive samples stood out from negative ones with a distinct color pattern under UV exposure. The proposed sensing scheme enabled highly specific identification of Salmonella with a detection limit at the single-copy level. Also, as a supplement to the intuitive naked-eye visualization results, numerical analysis of the colored images was available with a smartphone app to extract RGB values from colored images. This work provides a simple, rapid, and user-friendly solution for PCR identification, which promises great potential in molecular diagnosis of Salmonella and other pathogens in field. 展开更多
关键词 Bacteria detection Polymerase chain reaction Naked-eye visualization Ratiometric fiuorescence Smartphone app
原文传递
Electromagnetic wave absorption and corrosion resistance performance of carbon nanoclusters/Ce-Mn codoped barium ferrite composite materials 被引量:1
2
作者 Bo Li Lin Ma +7 位作者 Sinan Li Jiewu Cui Xiaohui Liang Wei Sun Pengjie Zhang Nan Huang Song Ma Zhidong Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期699-709,共11页
To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific... To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future. 展开更多
关键词 electromagnetic wave absorption ANTICORROSION barium ferrite cerium and manganese doping carbon nanoclusters
在线阅读 下载PDF
Correlation between the whole small recess offset and electrical performance of InP-based HEMTs
3
作者 GONG Hang ZHOU Fu-Gui +5 位作者 FENG Rui-Ze FENG Zhi-Yu LIU Tong SHI Jing-Yuan SU Yong-Bo JIN Zhi 《红外与毫米波学报》 北大核心 2025年第1期40-45,共6页
In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate proces... In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate process.We focus on their DC and RF responses,including the maximum transconductance(g_(m_max)),ON-resistance(R_(ON)),current-gain cutoff frequency(f_(T)),and maximum oscillation frequency(f_(max)).The devices have almost same RON.The g_(m_max) improves as the whole small recess moves toward the source.However,a small gate to source capacitance(C_(gs))and a small drain output conductance(g_(ds))lead to the largest f_(T),although the whole small gate recess moves toward the drain leads to the smaller g_(m_max).According to the small-signal modeling,the device with the whole small recess toward drain exhibits an excellent RF characteristics,such as f_(T)=372 GHz and f_(max)=394 GHz.This result is achieved by paying attention to adjust resistive and capacitive parasitics,which play a key role in high-frequency response. 展开更多
关键词 InP high-electron-mobility transistor(InP HEMT) INGAAS/INALAS DC/RF characteristic smallsignal modeling double-recessed gate process
在线阅读 下载PDF
Progress and trends of low-jitter fractional-N PLL
4
作者 Jun Yin Haoran Li +2 位作者 Xiaoqi Lin Rui PMartins Pui-In Mak 《Journal of Semiconductors》 2025年第7期11-14,共4页
Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing ... Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing the data rate,the PLL needs to generate low-jitter output[1]. 展开更多
关键词 PLL sophisticated modulations local oscillator fractional n phase locked loops high speed communication systems clock signals low jitter
在线阅读 下载PDF
High-Entropy Materials:A New Paradigm in the Design of Advanced Batteries
5
作者 Yangmei Xin Minmin Zhu +1 位作者 Haizhong Zhang Xinghui Wang 《Nano-Micro Letters》 2026年第1期1-52,共52页
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ... High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies. 展开更多
关键词 High entropy alloys High entropy oxides High entropy MXenes High entropy battery materials Machine learning
在线阅读 下载PDF
Band alignment of SnO/β-Ga_(2)O_(3) heterojunction and its electrical properties for power device application
6
作者 Xia Wu Chenyang Huang +6 位作者 Xiuxing Xu Jun Wang Xinwang Yao Yanfang Liu Xiujuan Wang Chunyan Wu Linbao Luo 《Journal of Semiconductors》 2025年第8期76-82,共7页
In this study,we present the fabrication of vertical SnO/β-Ga_(2)O_(3) heterojunction diode(HJD)via radio frequency(RF)reactive magnetron sputtering.The valence and conduction band offsets betweenβ-Ga_(2)O_(3) and S... In this study,we present the fabrication of vertical SnO/β-Ga_(2)O_(3) heterojunction diode(HJD)via radio frequency(RF)reactive magnetron sputtering.The valence and conduction band offsets betweenβ-Ga_(2)O_(3) and SnO are determined to be 2.65and 0.75 eV,respectively,through X-ray photoelectron spectroscopy,showing a type-Ⅱband alignment.Compared to its Schottky barrier diode(SBD)counterpart,the HJD presents a comparable specific ON-resistances(R_(on,sp))of 2.8 mΩ·cm^(2) and lower reverse leakage current(I_R),leading to an enhanced reverse blocking characteristics with breakdown voltage(BV)of 1675 V and power figure of merit(PFOM)of 1.0 GW/cm~2.This demonstrates the high quality of the SnO/β-Ga_(2)O_(3) heterojunction interface.Silvaco TCAD simulation further reveals that electric field crowding at the edge of anode for the SBD was greatly depressed by the introduction of SnO film,revealing the potential application of SnO/β-Ga_(2)O_(3) heterojunction in the futureβ-Ga_(2)O_(3)-based power devices.data mining,AI training,and similar technologies,are reserved. 展开更多
关键词 band alignment heterojunction diode(HJD) power semiconductor devices β-gallium oxide(β-Ga_(2)O_(3))
在线阅读 下载PDF
Impact of surface passivation on the electrical stability of strained germanium devices
7
作者 Zong-Hu Li Mao-Lin Wang +10 位作者 Zhen-Zhen Kong Gui-Lei Wang Yuan Kang Yong-Qiang Xu Rui Wu Tian-Yue Hao Ze-Cheng Wei Bao-Chuan Wang Hai-Ou Li Gang Cao Guo-Ping Guo 《Chinese Physics B》 2025年第9期66-71,共6页
Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the... Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability. 展开更多
关键词 HOLE strained germanium interface trap STABILITY surface passivation
原文传递
Correction:A Valuable and Low‑Budget Process Scheme of Equivalized 1 nm Technology Node Based on 2D Materials
8
作者 Yang Shen Zhejia Zhang +6 位作者 Zhujun Yao Mengge Jin Jintian Gao Yuhan Zhao Wenzhong Bao Yabin Sun He Tian 《Nano-Micro Letters》 2025年第11期717-720,共4页
Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed... Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection. 展开更多
关键词 equivalized nano micro letters process scheme D materials low budget figure legend error CORRECTION nm technology node
在线阅读 下载PDF
Enhanced electronic and photoelectrical properties of two-dimensional Zn-doped SnS_(2)
9
作者 Xichen Chuai Peng Yin +7 位作者 Jiawei Wang Guanhua Yang Congyan Lu Di Geng Ling Li Can Liu Zhongming Wei Nianduan Lu 《Chinese Physics B》 2025年第5期491-496,共6页
Alloy engineering,with its ability to tune the electronic band structure,is regarded as an effective method for adjusting the electronic and optoelectronic properties of two-dimensional(2D)semiconductors.However,synth... Alloy engineering,with its ability to tune the electronic band structure,is regarded as an effective method for adjusting the electronic and optoelectronic properties of two-dimensional(2D)semiconductors.However,synthesizing metal-site substitution alloys remains challenging due to the low reactivity of metal precursors and the tendency for spatial phase separation during high-temperature growth.Here,we report the preparation of a high-quality metal-site substitution alloy,Zn_(0.167)Sn_(0.833)S_(2),via the chemical vapor transport method,which exhibits excellent photoresponsivity and enhanced electrical transport properties.Comprehensive characterization techniques,including Raman spectroscopy,x-ray photoelectron spectroscopy(XPS),and electron microscopy,unambiguously confirm the uniform Zn substitution in the as-prepared Zn_(0.167)Sn_(0.833)S_(2) alloy.Furthermore,the photodetector based on the Zn_(0.167)Sn_(0.833)S_(2) alloy demonstrated a high on/off ratio of 51 under white light,a wide spectral response range from 350 nm to 900 nm,and a broad dynamic power range of 80 dB under 638-nm illumination.In terms of transport properties,field-effect transistors(FETs)based on Zn_(0.167)Sn_(0.833)S_(2) achieved a carrier mobility of 6.5 cm^(2)·V^(-1)·s^(-1),which is six times higher than that of SnS_(2).This alloy semiconductor showcases significantly enhanced electronic and optoelectronic properties,offering great potential for the development of high-resolution photodetection technologies. 展开更多
关键词 alloy engineering metal-site substitution PHOTODETECTOR field-effect transistors
原文传递
Fatigue of ferroelectric field effect transistor: mechanisms and optimization strategies
10
作者 Yu Song Pengfei Jiang +10 位作者 Pan Xu Xueyang Peng Qianqian Wei Qingyi Yan Wei Wei Yuan Wang Xiao Long Tiancheng Gong Yang Yang Eskilla Venkata Ramana Qing Luo 《Journal of Semiconductors》 2025年第6期66-78,共13页
The novel HfO2-based ferroelectric field effect transistor(FeFET)is considered a promising candidate for next-genera-tion nonvolatile memory(NVM).However,a series of reliability issues caused by the fatigue effect hin... The novel HfO2-based ferroelectric field effect transistor(FeFET)is considered a promising candidate for next-genera-tion nonvolatile memory(NVM).However,a series of reliability issues caused by the fatigue effect hinder its further develop-ment.Therefore,a comprehensive understanding of the fatigue mechanisms of the device and optimization strategies is essen-tial for its application.The fundamental mechanism of the fatigue effect is attributed to charge trapping and trap generation based on the current studies,and the underlying causes,occurrence locations and specific impacts are analyzed in this review.In particular,the asymmetric trapping/detrapping of electrons and holes,as well as the relationship between the ferroelectric(FE)polarization and charge trapping,are given particular attention.After categorizing and summarizing the current progress,we propose a series of optimization strategies derived based on the fatigue mechanisms. 展开更多
关键词 FEFET FATIGUE charge trapping trap generation
在线阅读 下载PDF
Materials,processes,devices and applications of magnetoresistive random access memory
11
作者 Meiyin Yang Yan Cui +1 位作者 Jingsheng Chen Jun Luo 《International Journal of Extreme Manufacturing》 2025年第1期277-306,共30页
Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circ... Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circuits.Although MRAM has achieved mass production,its manufacturing process still remains challenging,resulting in only a few semiconductor companies dominating its production.In this review,we delve into the materials,processes,and devices used in MRAM,focusing on both the widely adopted spin transfer torque MRAM and the next-generation spin-orbit torque MRAM.We provide an overview of their operational mechanisms and manufacturing technologies.Furthermore,we outline the major hurdles faced in MRAM manufacturing and propose potential solutions in detail.Then,the applications of MRAM in artificial intelligent hardware are introduced.Finally,we present an outlook on the future development and applications of MRAM. 展开更多
关键词 spin transfer torque-magnetoresistive random access memory(STT-MRAM) spin-orbit torque(SOT)MRAM materials for MRAM field-free writing of SOT-MRAM MRAM process artificial intelligence
在线阅读 下载PDF
Experimental demonstration of silicon nitride waveguide gratings with excellent efficiency and divergence angle
12
作者 Zhaozhen Chen Wenling Li +4 位作者 Qian Wang Enfeng Liu Xinqun Zhang Jingwei Liu Zhengsheng Han 《Chinese Physics B》 2025年第5期431-435,共5页
Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optic... Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optical waveguides is proposed,which shows a simple fabrication process,high upward diffraction efficiency,and lower far-field divergence angle.The measured results of the diffraction grating at a wavelength of 905 nm show the average upward diffraction efficiency of 90.5% and average far-field divergence angle of 0.154°,which shows a good agreement with the design results with the upward diffraction efficiency of 91.6%and far-field divergence angle of 0.105°. 展开更多
关键词 silicon nitride photonic platform optical waveguides
原文传递
Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
13
作者 Guoshuai Du Yubing Du +7 位作者 Jiaxin Ming Zhixi Zhu Jiaohui Yan Jiayin Li Tiansong Zhang Lina Yang Ke Jin Yabin Chen 《Chinese Physics B》 2025年第9期412-418,共7页
The extensive applications of cubic silicon in flexible transistors and infrared detectors are greatly hindered by its intrinsic properties.Metastable silicon phases,such as Si-Ⅲ,Ⅳ,andⅫ,prepared using extreme press... The extensive applications of cubic silicon in flexible transistors and infrared detectors are greatly hindered by its intrinsic properties.Metastable silicon phases,such as Si-Ⅲ,Ⅳ,andⅫ,prepared using extreme pressure methods,provide a unique“genetic bank”with diverse structures and exotic characteristics.However,exploration of their inherent physical properties remains underdeveloped.Herein,we demonstrate the phase engineering strategy to modulate the thermal conductivity and mechanical properties of metastable silicon.The thermal conductivity,obtained via the Raman optothermal approach,exhibits broad tunability across various Si-Ⅰ,Ⅲ,Ⅻ,andⅣphases.The hardness and Young's modulus of Si-Ⅳare significantly greater than those of the Si-Ⅲ/Ⅻmixture,as confirmed by the nanoindentation technique.Moreover,it was found that pressure-induced structural defects can substantially degrade the thermal and mechanical properties of silicon.This systematic investigation offers a feasible route for designing novel semiconductors and further advancing their desirable applications in advanced nanodevices and mechanical transducers. 展开更多
关键词 metastable silicon thermal conductivity mechanical property high pressure
原文传递
A Valuable and Low-Budget Process Scheme of Equivalized 1 nm Technology Node Based on 2D Materials
14
作者 Yang Shen Zhejia Zhang +6 位作者 Zhujun Yao Mengge Jin Jintian Gao Yuhan Zhao Wenzhong Bao Yabin Sun He Tian 《Nano-Micro Letters》 2025年第8期294-305,共12页
Emerging two-dimensional(2D)semiconductors are among the most promising materials for ultra-scaled transistors due to their intrinsic atomic-level thickness.As the stacking process advances,the complexity and cost of ... Emerging two-dimensional(2D)semiconductors are among the most promising materials for ultra-scaled transistors due to their intrinsic atomic-level thickness.As the stacking process advances,the complexity and cost of nanosheet field-effect transistors(NSFETs)and complementary FET(CFET)continue to rise.The 1 nm technology node is going to be based on Si-CFET process according to international roadmap for devices and systems(IRDS)(2022,https://irds.ieee.org/),but not publicly confirmed,indicating that more possibilities still exist.The miniaturization advantage of 2D semiconductors motivates us to explore their potential for reducing process costs while matching the performance of next-generation nodes in terms of area,power consumption and speed.In this study,a comprehensive framework is built.A set of MoS2 NSFETs were designed and fabricated to extract the key parameters and performances.And then for benchmarking,the sizes of 2D-NSFET are scaled to a extent that both of the Si-CFET and 2D-NSFET have the same average device footprint.Under these conditions,the frequency of ultra-scaled 2D-NSFET is found to improve by 36%at a fixed power consumption.This work verifies the feasibility of replacing silicon-based CFETs of 1 nm node with 2D-NSFETs and proposes a 2D technology solution for 1 nm nodes,i.e.,“2D eq 1 nm”nodes.At the same time,thanks to the lower characteristic length of 2D semiconductors,the miniaturized 2D-NSFET achieves a 28%frequency increase at a fixed power consumption.Further,developing a standard cell library,these devices obtain a similar trend in 16-bit RISC-V CPUs.This work quantifies and highlights the advantages of 2D semiconductors in advanced nodes,offering new possibilities for the application of 2D semiconductors in high-speed and low-power integrated circuits. 展开更多
关键词 Two-dimensional semiconductors 1 nm technology node Nanosheet field-effect transistors Complementary field-effect transistors Horizontal scaling
在线阅读 下载PDF
Back-gate bias and supply voltage dependency on the single-event upset susceptibility of 6 T CSOI-SRAM
15
作者 Li-Wen Yao Jin-Hu Yang +12 位作者 Yu-Zhu Liu Bo Li Yang Jiao Shi-Wei Zhao Qi-Yu Chen Xin-Yu Li Tian-Qi Wang Fan-Yu Liu Jian-Tou Gao Jian-Li Liu Xing-Ji Li Jie Liu Pei-Xiong Zhao 《Nuclear Science and Techniques》 2025年第9期105-115,共11页
This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) unde... This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) under high linear energy transfer heavyion experimentation.The experimental findings demonstrate that applying a negative back-gate bias to NMOS and a positive back-gate bias to PMOS enhances the SEU resistance of SRAM.Specifically,as the back-gate bias for N-type transistors(V_(nsoi)) decreases from 0 to-10 V,the SEU cross section decreases by 93.23%,whereas an increase in the back-gate bias for P-type transistors (V_(psoi)) from 0 to 10 V correlates with an 83.7%reduction in SEU cross section.Furthermore,a significant increase in the SEU cross section was observed with increase in supply voltage,as evidenced by a 159%surge at V_(DD)=1.98 V compared with the nominal voltage of 1.8 V.To explore the physical mechanisms underlying these experimental data,we analyzed the dependence of the critical charge of the circuit and the collected charge on the bias voltage by simulating SEUs using technology computer-aided design. 展开更多
关键词 Single-event upset(SEU) Static random-access memory(SRAM) Back-gate voltage Supply voltage
在线阅读 下载PDF
Correcting on-chip distortion of control pulses with silicon spin qubits
16
作者 Ming Ni Rong-Long Ma +10 位作者 Zhen-Zhen Kong Ning Chu Wei-Zhu Liao Sheng-Kai Zhu Chu Wang Gang Luo Di Liu Gang Cao Gui-Lei Wang Hai-Ou Li Guo-Ping Guo 《Chinese Physics B》 2025年第1期265-271,共7页
In semiconductor quantum dot systems,pulse distortion is a significant source of coherent errors,which impedes qubit characterization and control.Here,we demonstrate two calibration methods using a two-qubit system as... In semiconductor quantum dot systems,pulse distortion is a significant source of coherent errors,which impedes qubit characterization and control.Here,we demonstrate two calibration methods using a two-qubit system as the detector to correct distortion and calibrate the transfer function of the control line.Both methods are straightforward to implement,robust against noise,and applicable to a wide range of qubit types.The two methods differ in correction accuracy and complexity.The first,coarse predistortion(CPD)method,partially mitigates distortion.The second,all predistortion(APD)method,measures the transfer function and significantly enhances exchange oscillation uniformity.Both methods use exchange oscillation homogeneity as the metric and are suitable for any qubit driven by a diabatic pulse.We believe these methods will enhance qubit characterization accuracy and operation quality in future applications. 展开更多
关键词 quantum computation quantum dot pulse distortion
原文传递
The Roadmap of 2D Materials and Devices Toward Chips 被引量:6
17
作者 Anhan Liu Xiaowei Zhang +16 位作者 Ziyu Liu Yuning Li Xueyang Peng Xin Li Yue Qin Chen Hu Yanqing Qiu Han Jiang Yang Wang Yifan Li Jun Tang Jun Liu Hao Guo Tao Deng Songang Peng He Tian Tian‑Ling Ren 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期343-438,共96页
Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t... Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked. 展开更多
关键词 Two-dimensional materials ROADMAP Integrated circuits Post-Moore era
在线阅读 下载PDF
Enhanced quality of Al_(2)O_(3)/SiC gate stack via microwave plasma annealing 被引量:2
18
作者 Nan-Nan You Xin-Yu Liu +6 位作者 Qian Zhang Zhen Wang Jia-Yi Wang Yang Xu Xiu-Yan Li Yu-Zheng Guo Sheng-Kai Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期5362-5371,共10页
The high-quality gate dielectric on silicon carbide(SiC)surface is critical to fabricate high-performance SiC metal-oxide-semiconductor field-effect transistors(MOSFETs).This research employs microwave plasma annealin... The high-quality gate dielectric on silicon carbide(SiC)surface is critical to fabricate high-performance SiC metal-oxide-semiconductor field-effect transistors(MOSFETs).This research employs microwave plasma annealing(MPA)to obtain high-quality Al_(2)O_(3)/SiC gate stacks.By designing MPA atmosphere and optimizing the plasma power,the SiC MOS capacitor with a Al_(2)O_(3)dielectric film shows the enhanced performance.The interface state density is reduced by 1 order of magnitude to 6×10^(11)cm^(-2)·eV^(-1),the breakdown electric field is increased,and the voltage shift is effectively suppressed Besides,the mechanism of MPA process is discussed in terms of the thermal effect and reactant species.X-ray photoelectron spectroscopy(XPS)results unveil oxygen plasma plays the main role.Optimal plasma power during the MPA process results in defect repairs of the firstneighbor Al-O bonding and partial removal of Al-O-H bond from the interface region.This study demonstrates that MPA process is an effective option to realize highquality dielectric and interface on SiC. 展开更多
关键词 Silicon carbide Al_(2)O_(3) METAL-OXIDE-SEMICONDUCTOR Microwave plasma annealing Defect repairs X-ray photoelectron spectroscopy
原文传递
Surface micromorphology and nanostructures evolution in hybrid laser processes of slicing and polishing single crystal 4H-SiC 被引量:1
19
作者 Yuhang Li Zhe Zhang +6 位作者 Qi Song Haiyan Shi Yu Hou Song Yue Ran Wang Shunshuo Cai Zichen Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期235-244,共10页
Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach... Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach combining laser slicing and laser polishing technologies has been innovatively applied to increase utilization and decrease damage defects for single crystal 4H-SiC.Significant material utiliza-tion has been achieved in the hybrid laser processes,where material loss is reduced by 75%compared to that of conventional machining technologies.Without any special process control or additional treat-ment,an internally modified layer formed by laser slicing can easily separate the 4H-SiC crystals using an external force of about∼3.6 MPa.The modified layer has been characterized using a micro-Raman method to determine residual stress.The sliced surface exhibits a combination of smooth and coarse appearances around the fluvial morphology,with an average surface roughness of over S_(a) 0.89μm.An amorphous phase surrounds the SiC substrate,with two dimensions of lattice spacing,d=0.261 nm and d=0.265 nm,confirmed by high-resolution transmission electron microscopy(HRTEM).The creation of laser-induced periodic surface nanostructures in the laser-polished surface results in a flatter surface with an average roughness of less than S_(a) 0.22μm.Due to the extreme cooling rates and multiple thermal cy-cles,dissociation of Si-C bonding,and phase separation are identified on the laser-polished surface,which is much better than that of the machining surface.We anticipate that this approach will be applicable to other high-value crystals and will have promising viability in the aerospace and semiconductor industries. 展开更多
关键词 Laser polishing Silicon carbide Internal modification Laser slicing Surface quality Microstructure
原文传递
Digital Twin Technology of Human-Machine Integration in Cross-Belt Sorting System 被引量:1
20
作者 Yanbo Qu Ning Zhao Haojue Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期195-212,共18页
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy... The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center. 展开更多
关键词 Industry 5.0 Cross-belt sorting system Human-machine integrated Digital twin Online optimization
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部