The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and alm...The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.展开更多
In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reac...In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.展开更多
In the paper, we investigate an elliptic system well-known as the Gray-Scott model and present some further results for positive solutions of this model. More precisely, we give the refined a priori estimates of posit...In the paper, we investigate an elliptic system well-known as the Gray-Scott model and present some further results for positive solutions of this model. More precisely, we give the refined a priori estimates of positive solutions, and improve some previous results for the non-existence and existence of positive non-constant solutions as the parameters are varied, which imply some certain conditions where the pattern formation occurs or not.展开更多
In this note, a diffusive predator-prey model subject to the homogeneous Neumann bound- ary condition is investigated and some qualitative analysis of solutions to this reaction-diffusion system and its corresponding ...In this note, a diffusive predator-prey model subject to the homogeneous Neumann bound- ary condition is investigated and some qualitative analysis of solutions to this reaction-diffusion system and its corresponding steady-state problem is presented. In particular, by use of a Lyapunov function, the global stability of the constant positive steady state is discussed. For the associated steady state problem, a priori estimates for positive steady states are derived and some non-existence results for non-constant positive steady states are also established when one of the diffusion rates is large enough. Consequently, our results extend and complement the existing ones on this model.展开更多
基金Project supported by the National Natural Science Foundation of China (No.60574025)the Natural Science Foundation of Hubei Province of China (Nos.2004ABA055, D200613002)the Natural Science Foundation of China Three Gorges University.
文摘The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.
基金the National Natural Science Foundation of China (Grant Nos. 10801090, 10726016,10771032)the Scientific Innovation Team Project of Hubei Provincial Department of Education (Grant No.T200809)
文摘In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.
基金This work Was partially supported by the National Natural Science Foundation of China(Grant No.10471022)
文摘In the paper, we investigate an elliptic system well-known as the Gray-Scott model and present some further results for positive solutions of this model. More precisely, we give the refined a priori estimates of positive solutions, and improve some previous results for the non-existence and existence of positive non-constant solutions as the parameters are varied, which imply some certain conditions where the pattern formation occurs or not.
基金supported by National Natural Science Foundation of China (Grant Nos. 10801090, 10871185, 10726016)supported by the Scientifio Research Projects of Hubei Provincial Department of Education (Grant No. Q200713001)+1 种基金Scientific Innovation Team Project of Hubei Provincial Department of Education (Grant No. T200809)supported by National Natural Science Foundation of China (Grant No. 10771032)
文摘In this note, a diffusive predator-prey model subject to the homogeneous Neumann bound- ary condition is investigated and some qualitative analysis of solutions to this reaction-diffusion system and its corresponding steady-state problem is presented. In particular, by use of a Lyapunov function, the global stability of the constant positive steady state is discussed. For the associated steady state problem, a priori estimates for positive steady states are derived and some non-existence results for non-constant positive steady states are also established when one of the diffusion rates is large enough. Consequently, our results extend and complement the existing ones on this model.