In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied envi...In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.展开更多
The network diameter is an important characteristic parameter of a complex network. Calculation for a large-scale complex network’s diameter has been an important subject in the study of complex networks. If the netw...The network diameter is an important characteristic parameter of a complex network. Calculation for a large-scale complex network’s diameter has been an important subject in the study of complex networks. If the network diameter is calculated directly, the problem mainly exists in efficiency for searching and counting the shortest paths. If the network diameter is calculated indirectly by studying the statistical function about the relationship between the network diameter and parameters affecting the diameter, the problems not only exist in the efficiency of statistic, but also exist in the function which may be not applicable to all kinds of networks. An algorithm for the complex network diameter based on the k order distance matrix is proposed with a matrix multiplication approach, and a mathematical proof for the algorithm correctness is given as well. Furthermore, some relevant propositions and deductions for reducing the complexity of this algorithm are put forward. With a good theoretical basis and a simple calculation process, this algorithm can be used to calculate the diameter of a large-scale complex network with small-world effect more accurately and efficiently. Two cases about the advanced research projects agency(ARPA) network model and the Chinese airline network model are adopted to verify the effect of this algorithm.展开更多
基金supported by the National Key Research and Development Program of China(No.2018AAA0102401)the National Natural Science Foundation of China(Nos.62022060,61773278,61873340).
文摘In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.
基金supported by the National Natural Science Foundation of China(61273210)
文摘The network diameter is an important characteristic parameter of a complex network. Calculation for a large-scale complex network’s diameter has been an important subject in the study of complex networks. If the network diameter is calculated directly, the problem mainly exists in efficiency for searching and counting the shortest paths. If the network diameter is calculated indirectly by studying the statistical function about the relationship between the network diameter and parameters affecting the diameter, the problems not only exist in the efficiency of statistic, but also exist in the function which may be not applicable to all kinds of networks. An algorithm for the complex network diameter based on the k order distance matrix is proposed with a matrix multiplication approach, and a mathematical proof for the algorithm correctness is given as well. Furthermore, some relevant propositions and deductions for reducing the complexity of this algorithm are put forward. With a good theoretical basis and a simple calculation process, this algorithm can be used to calculate the diameter of a large-scale complex network with small-world effect more accurately and efficiently. Two cases about the advanced research projects agency(ARPA) network model and the Chinese airline network model are adopted to verify the effect of this algorithm.