Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/method...Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected.展开更多
Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor i...Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering.展开更多
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo...Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.展开更多
基金funded by the China State Railway Group Co.,Ltd.Science and technology research and development program project(K2023G085).
文摘Purpose–This paper analyzes the application of digital twin technology in the field of intelligent operation and maintenance of high-speed railway infrastructure from the perspective of top-level design.Design/methodology/approach–This paper provides a comprehensive overview of the definition,connotations,characteristics and key technologies of digital twin technology.It also conducts a thorough analysis of the current state of digital twin applications,with a particular focus on the overall requirements for intelligent operation and maintenance of high-speed railway infrastructure.Using the Jinan Yellow River Bridge on the Beijing–Shanghai high-speed railway as a case study,the paper details the construction process of the twin system from the perspectives of system architecture,theoretical definition,model construction and platform design.Findings–Digital twin technology can play an important role in the whole life cycle management,fault prediction and condition monitoring in the field of high-speed rail operation and maintenance.Digital twin technology is of great significance to improve the intelligent level of high-speed railway operation and management.Originality/value–This paper systematically summarizes the main components of digital twin railway.The general framework of the digital twin bridge is given,and its application in the field of intelligent operation and maintenance is prospected.
基金supported by China Academy of Railway Sciences Foundation(Research on Multi Agent Collaborative Mechanism of Intelligent High Speed Rail System Based on Complex Adaptive System Theory,Grant 2023YJ392).
文摘Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering.
基金supported by the National Natural Science Foundation of China[U2268217].
文摘Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article.