期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influence of Repeated Variable Load on Long-Term Behavior of Concrete Elements 被引量:3
1
作者 Toni Arangjelovski GoranMarkovski Peter Mark 《Journal of Civil Engineering and Architecture》 2014年第3期302-314,共13页
The objective of this paper is to study the influence of repeated variable action on long-term behavior of concrete structural elements using quasi-permanent combination of actions, for the assessment of long-term eff... The objective of this paper is to study the influence of repeated variable action on long-term behavior of concrete structural elements using quasi-permanent combination of actions, for the assessment of long-term effects (e.g., effects due to creep and shrinkage in concrete structures), as it is proposed in Eurocodes. Extensive experimental program and analytical research using model B3 and AAEM (age adjusted effective modulus) method was performed in order to define quasi-permanent factor ψ2, for two specific loading histories. These loading histories were consist of long-term permanent action "G" and repeated variable action "Q". The variable load was applied in cycles of loading/unloading for 24 h and 48 h in period of 400 days appropriately for one series of concrete elements. 24 reinforced concrete beams, dimensions 150 mm × 280 mm × 3,000 mm, were tested. Twelve beams were made of concrete class C30/37 and 12 of concrete class C60/75. 展开更多
关键词 Repeated variable actions autogenous shrinkage CREEP Model B3.
在线阅读 下载PDF
Low Friction Sliding Planes of Greased PTFE for High Contact Pressures
2
作者 Lennart Bocklenberg Karsten Winkler +1 位作者 Peter Mark Stefan Rybarz 《Open Journal of Civil Engineering》 2016年第2期105-116,共12页
Sliding planes of PTFE are commonly used because of their excellent tribological properties. However, especially in cases of high contact pressures, PTFE suffers from its comparatively poor mechanical properties. This... Sliding planes of PTFE are commonly used because of their excellent tribological properties. However, especially in cases of high contact pressures, PTFE suffers from its comparatively poor mechanical properties. This paper presents a sliding construction developed within an innovative experimental test-setup to enable experimental investigation of large-scale concrete members subjected to punching shear. To fulfill the special demands of the new test-setup, greased, only 0.5 mm thin sheets of PTFE were used to minimize friction between the bearing construction and the test specimen. This highly effective sliding construction leads to a dynamic friction coefficient μ<sub>d,max</sub> between 0.0065 and 0.0035 while the static friction coefficient μ<sub>s</sub> remains below 0.0048. Simultaneously, compressive axial stresses of more than 60 MPa occur. The paper highlights major aspects of the sliding plane’s development and demonstrates its sliding abilities. 展开更多
关键词 Sliding Plane PTFE Innovative Test-Setup EXPERIMENTS
在线阅读 下载PDF
双向弯曲及轴向作用下任意截面钢筋混凝土柱强度分析 被引量:1
3
作者 刁波 叶英华 L.Sparowitz 《自然科学进展(国家重点实验室通讯)》 北大核心 2001年第4期423-428,共6页
介绍了在双向弯曲及轴向作用下任意截面钢筋混凝土柱强度分析的精确方法.该方法既考虑了材料非线性特征,也考虑了构件变形对柱承载力的影响.混凝土和钢筋的实际应力-应变关系用三次多项式分段模拟.得到的单元刚度矩阵是小位移材料非线... 介绍了在双向弯曲及轴向作用下任意截面钢筋混凝土柱强度分析的精确方法.该方法既考虑了材料非线性特征,也考虑了构件变形对柱承载力的影响.混凝土和钢筋的实际应力-应变关系用三次多项式分段模拟.得到的单元刚度矩阵是小位移材料非线性刚度、几何刚度矩阵以及高阶相互作用矩阵的简单叠加.建立的分析模式既可用于柱的材料强度破坏分析,也可用于柱的稳定破坏分析.分析模型运用于任意形状截面钢筋混凝土中心受压、偏心受压和双向偏压构件.推导的标准有限元公式很容易与其他有限元模型兼容,理论分析结果与实验结果吻合较好. 展开更多
关键词 任意截面 极限荷载 钢筋混凝土柱 非线性 双向弯曲 轴向作用 强度分析 承载能力
在线阅读 下载PDF
Shear assessment of compression flanges of structural concrete T-beams
4
作者 Bjorn SCHUTTE Viktor SIGRIST 《Frontiers of Structural and Civil Engineering》 CSCD 2014年第4期354-361,共8页
In T-beams the force transfer from the web into the flange has to be studied. The general design procedure is based on a strut-and-tie (or a stress field) model which comprises spreading compressive and transverse t... In T-beams the force transfer from the web into the flange has to be studied. The general design procedure is based on a strut-and-tie (or a stress field) model which comprises spreading compressive and transverse tensile forces. As is known, strut-and-tie models represent the force flow within a structural member at ultimate. This procedure is sufficient for design purposes and in general, leads to safe results. For the assessment of a structure it may be worthwhile to improve the accuracy. For this purpose both web and flange have to be looked at more in detail. An advanced method for the analysis of webs in shear is the Generalized Stress Field Approach [1]. This approach can be utilized for treating flanges, where the classical assumptions have to be adapted; in particular by considering the strain dependence of the concrete compressive strength and thus, defining a representative strain value. In the present contribution background and details of these aspects are given, and the corresponding calculation procedure is described. Theoretical results are compared with experimental data and show a reasonably good agreement. However, as the number of sufficiently documented tests is very limited no concluding findings are attained. 展开更多
关键词 concrete structures structural assessment stress field analysis SHEAR
原文传递
A holistic approach for the investigation of lining response to mechanized tunneling induced construction loadings 被引量:1
5
作者 Vojtech Ernst Gall Ahmed Marwan +3 位作者 Mario Smarslik Markus Obel Peter Mark Gunther Meschke 《Underground Space》 SCIE EI 2018年第1期45-60,共16页
Design methods for segmental tunnel linings used in mechanized tunnel constructions typically employ numerical bedded beam mod-els and/or classical analytical solutions for the determination of structural forces(i.e.m... Design methods for segmental tunnel linings used in mechanized tunnel constructions typically employ numerical bedded beam mod-els and/or classical analytical solutions for the determination of structural forces(i.e.moments and shear and axial forces)and simple load spreading assumptions for the design of the reinforcement in joint areas.However effcient such methods may be,many physical details are often overlooked and/or oversimplified in the process of reducing the actual structure to a structural beam model,e.g.ana-lytically derived loadings are employed,the grouting and ground reactions are reduced to a spring bedding,and the confinement due to grouting at the longitudinal joint is largely not considered in reinforcement design.Such a design process is not able to account for,or predict,the susceptibility of tunnel linings to often observed damages that,although they may not be structurally relevant,lead to ser-viceability or durability issues,such as crack development or chipping at the segment corners.Numerical methods,such as the Finite Element Method,provide an opportunity to model the segmental tunnel lining and its response to the entire TBM construction process and to explicitly model the crack development within individual segments using modern methods to model the discontinuities in struc-tures.In this contribution,a holistic modeling procedure for the representation of the tunnel lining within the tunneling process is pro-posed and compared to traditional lining models.A 3D process oriented Finite Element model is used to calculate the predicted forces on the tunnel lining and the obtained results are compared with those generated by traditional methods.Subsequently,the predicted defor-mations are then transferred to a detailed segment model in which the nonlinear response of the segment at the longitudinal joint is mod-eled using an interface element based approach to simulate concrete cracking. 展开更多
关键词 Mechanized tunneling Segmental tunnel linings Finite element method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部