The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various dis...The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various disciplinary models is extremely complicated.In the modeling and integration process,extensive customized development is needed to realize model integration and interoperability in different business scenarios.Meanwhile,the differences in modeling and interaction between different modeling tools make it difficult to support the consistent representation of models in complex scenarios.To improve the efficiency of system modeling and integration in complex business scenarios,a system modeling and integration method was proposed.This method took the Sys ML language kernel as the core and system model function integration as the main line.Through the technical means of model view separation,abstract operation interface,and model view configuration,the model modeling and integration of multi-user,multi-model,multi-view,and different business logic in complex business scenarios were realized.展开更多
With the advancements in parameter-efficient transfer learning techniques,it has become feasible to leverage large pre-trained language models for downstream tasks under low-cost and low-resource conditions.However,ap...With the advancements in parameter-efficient transfer learning techniques,it has become feasible to leverage large pre-trained language models for downstream tasks under low-cost and low-resource conditions.However,applying this technique to multimodal knowledge transfer introduces a significant challenge:ensuring alignment across modalities while minimizing the number of additional parameters required for downstream task adaptation.This paper introduces UniTrans,a framework aimed at facilitating efficient knowledge transfer across multiple modalities.UniTrans leverages Vector-based Cross-modal Random Matrix Adaptation to enable fine-tuning with minimal parameter overhead.To further enhance modality alignment,we introduce two key components:the Multimodal Consistency Alignment Module and the Query-Augmentation Side Network,specifically optimized for scenarios with extremely limited trainable parameters.Extensive evaluations on various cross-modal downstream tasks demonstrate that our approach surpasses state-of-the-art methods while using just 5%of their trainable parameters.Additionally,it achieves superior performance compared to fully fine-tuned models on certain benchmarks.展开更多
A constitutive equation theory of Oldroyd fluid B type,i.e.the co-rotational derivative type,is developed for the anisotropic-viscoelastic fluid of liquid crystalline(LC)polymer.Analyzing the influence of the orientat...A constitutive equation theory of Oldroyd fluid B type,i.e.the co-rotational derivative type,is developed for the anisotropic-viscoelastic fluid of liquid crystalline(LC)polymer.Analyzing the influence of the orientational motion on the material behavior and neglecting the influence,the constitutive equation is applied to a simple case for the hydrodynamic motion when the orientational contribution is neglected in it and the anisotropic relaxation,retardation times and anisotropic viscosi- ties are introduced to describe the macroscopic behavior of the anisotropic LC polymer fluid.Using the equation for the shear flow of LC polymer fluid,the analytical expressions of the apparent viscosity and the normal stress differences are given which are in a good agreement with the experimental results of Baek et al.For the fiber spinning flow of the fluid,the analytical expression of the extensional viscosity is given.展开更多
Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anis...Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anisotropic suspension were reported.A new concept of simple anisotropic fluid was introduced.On the basis of anisotropic principle,the simple fluid stress behaviour was described by velocity gradient tensor F and spin tensor W instead of velocity gradient tensor D in the classic Leslie-Ericksen continuum theory.Two relaxation times analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equation of co-rotational type was introduced.More general model LCP-H for the fluid was developed.The unsymmetry of the shear stress was predicted by the present continuum theory for anisotropic viscoelastic fluid-LC polymer liquids.The influence of the relaxation times on material functions was specially studied.It is important to study the unsteady vibrational rotating flow with small amplitudes,as it is a best way to obtain knowledge of elasticity of the LC polymer,i.e.dynamic viscoelasticity.For the shear-unsymmetric stresses,two shear stresses were obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) were introduced by the constitutive equation which was defined by rotating shear rate introduced by author.For the two stability problems of fluid,such as stability of hydrodynamic flow and orientational motion,were discussed.The results show that the polymer suspension systems exhibit anisotropic character.The PNC systems can exhibit significant shear-thinning effects.For more concentrated polymer nano-suspensions,the first normal stress difference change from positive to negative,which is similar to LC polymer behavior.展开更多
In this paper a class of real-time parallel modified Rosenbrock methods of numerical simulation is constructed for stiff dynamic systems on a multiprocessor system, and convergence and numerical stability of these met...In this paper a class of real-time parallel modified Rosenbrock methods of numerical simulation is constructed for stiff dynamic systems on a multiprocessor system, and convergence and numerical stability of these methods are discussed. A-stable real-time parallel formula of two-stage third-order and A(α)-stable real-time parallel formula with o ≈ 89.96° of three-stage fourth-order are particularly given. The numerical simulation experiments in parallel environment show that the class of algorithms is efficient and applicable, with greater speedup.展开更多
Based on the modeling theoretical research of the amphibious vehicle systems, a simulation computed architecture on the state space expressions of hydrodynamics for amphibious vehicle systems are educed, and simulatio...Based on the modeling theoretical research of the amphibious vehicle systems, a simulation computed architecture on the state space expressions of hydrodynamics for amphibious vehicle systems are educed, and simulation computed results of navigation characteristics, vibration-impact characteristics, firing-hitting characteristics for amphibious vehicle on water are given. It is shown that the hydrodynamic research on amphibious vehicle systems is necessary and feasible.展开更多
This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the co...This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.展开更多
It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling alg...It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.展开更多
Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represen...Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.展开更多
Aiming at the problem of merging heterogeneous semantic taxonomy emerged in Web information integration, a method of building Web classification ontology (WCO) has been proposed. A WCO that is logically consistent w...Aiming at the problem of merging heterogeneous semantic taxonomy emerged in Web information integration, a method of building Web classification ontology (WCO) has been proposed. A WCO that is logically consistent with the suggested upper merged ontology (SUMO) is defined, together with axioms needed to classify Web pages. WCO can be used as a foundation of merging heterogeneous semantic taxonomy, and could be used to support Web information integration and classification based Web information retrieval.展开更多
Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least square...Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM.展开更多
Silicon bulk etching is an important part of micro-electro-mechanical system(MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide(TMAH) solution heat...Silicon bulk etching is an important part of micro-electro-mechanical system(MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide(TMAH) solution heated up to boiling point. The monocrystalline silicon wafer is positioned over the solution surface and can be anisotropically etched by the produced vapor. This etching method does not rely on the expensive vacuum equipment used in dry etching. Meanwhile, it presents several advantages like low roughness, high etching rate and high uniformity compared with the conventional wet etching methods. The etching rate and roughness can reach 2.13 μm/min and 1.02 nm, respectively. Furthermore,the diaphragm structure and Al-based pattern on the non-etched side of wafer can maintain intact without any damage during the back-cavity fabrication. Finally, an etching mechanism has been proposed to illustrate the observed experimental phenomenon. It is suggested that there is a water thin film on the etched surface during the solution evaporation. It is in this water layer that the ionization and etching reaction of TMAH proceed, facilitating the desorption of hydrogen bubble and the enhancement of molecular exchange rate. This new etching method is of great significance in the low-cost and high-quality micro-electromechanical system industrial fabrication.展开更多
How to accurately recognize the mental state of pilots is a focus in civil aviation safety.The mental state of pilots is closely related to their cognitive ability in piloting.Whether the cognitive ability meets the s...How to accurately recognize the mental state of pilots is a focus in civil aviation safety.The mental state of pilots is closely related to their cognitive ability in piloting.Whether the cognitive ability meets the standard is related to flight safety.However,the pilot’s working state is unique,which increases the difficulty of analyzing the pilot’s mental state.In this work,we proposed a Convolutional Neural Network(CNN)that merges attention to classify the mental state of pilots through electroencephalography(EEG).Considering the individual differences in EEG,semi-supervised learning based on improvedK-Means is used in themodel training to improve the generalization ability of the model.We collected the EEG data of 12 pilot trainees during the simulated flight and compared the method in this paper with other methods on this data.The method in this paper achieved an accuracy of 86.29%,which is better than 4D-aNN and HCNN etc.Negative emotion will increase the probability of fatigue appearing,and emotion recognition is also meaningful during the flight.Then we conducted experiments on the public dataset SEED,and our method achieved an accuracy of 93.68%.In addition,we combine multiple parameters to evaluate the results of the classification network on a more detailed level and propose a corresponding scoring mechanism to display the mental state of the pilots directly.展开更多
The importance of software residual defects and some prediction residual defects models are introduced. The problem that is not easy adapted to a general model is discussed. The model of prediction residual defects ba...The importance of software residual defects and some prediction residual defects models are introduced. The problem that is not easy adapted to a general model is discussed. The model of prediction residual defects based on BBNs is proposed and the detailed processes of the approach are given.展开更多
According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with...According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with quality of multi-service and membership function of satisfaction, which integrates the energy consumption of communication and residual and the information of time delay into the membership function of satisfaction to solve the equilibrium factor, so that it can become the optimal routing that balances the network lifetime, transmission delay of data, and node energy consumption of nodes. Simulation experiment shows that adopting the algorithm can make lifecycle of nodes longer and network transmit more data packets at the same time. Experimental results verify the algorithm can effectively balance the network energy, reduce the energy consumption and prolong the network lifetime.展开更多
In actual engineering, processing of big data sometimes requires building of mass physical models, while processing of physical model requires relevant math model, thus producing mass multivariate polynomials, the eff...In actual engineering, processing of big data sometimes requires building of mass physical models, while processing of physical model requires relevant math model, thus producing mass multivariate polynomials, the effective reduction of which is a difficult problem at present. A novel algorithm is proposed to achieve the approximation factorization of complex coefficient multivariate polynomial in light of characteristics of multivariate polynomials. At first, the multivariate polynomial is reduced to be the binary polynomial, then the approximation factorization of binary polynomial can produce irreducible duality factor, at last, the irreducible duality factor is restored to the irreducible multiple factor. As a unit root is cyclic, selecting the unit root as the reduced factor can ensure the coefficient does not expand in a reduction process. Chinese remainder theorem is adopted in the corresponding reduction process, which brought down the calculation complexity. The algorithm is based on approximation factorization of binary polynomial and calculation of approximation Greatest Common Divisor, GCD. The algorithm can solve the reduction of multivariate polynomials in massive math models, which can obtain effectively null point of multivariate polynomials, providing a new approach for further analysis and explanation of physical models. The experiment result shows that the irreducible factors from this method get close to the real factors with high efficiency.展开更多
Compared with western medicine, there are many complicated factors affecting the intrinsic quality of traditional Chinese medicine, because its production needs to be planted, harvested, processed, transported, stored...Compared with western medicine, there are many complicated factors affecting the intrinsic quality of traditional Chinese medicine, because its production needs to be planted, harvested, processed, transported, stored, and sold, etc. Therefore, the internet of things is integrated into the traceability of traditional Chinese medicine, and its key technologies are studied. An XMLbased traceability information exchange model was constructed for traditional Chinese medicine and modeled the traceability process by the finite state machine (FSM). Furthermore, the specific electronic product code (EPC) coding scheme of traditional Chinese medicine was proposed based on the EPC coding structure model. Finally, the effectiveness of the above models and schemes is verified by an example of a traditional Chinese medicine traceability prototype system.展开更多
For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,an...For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.展开更多
Since the web service is essential in daily lives,cyber security becomes more and more important in this digital world.Malicious Uniform Resource Locator(URL)is a common and serious threat to cybersecurity.It hosts un...Since the web service is essential in daily lives,cyber security becomes more and more important in this digital world.Malicious Uniform Resource Locator(URL)is a common and serious threat to cybersecurity.It hosts unsolicited content and lure unsuspecting users to become victim of scams,such as theft of private information,monetary loss,and malware installation.Thus,it is imperative to detect such threats.However,traditional approaches for malicious URLs detection that based on the blacklists are easy to be bypassed and lack the ability to detect newly generated malicious URLs.In this paper,we propose a novel malicious URL detection method based on deep learning model to protect against web attacks.Specifically,we firstly use auto-encoder to represent URLs.Then,the represented URLs will be input into a proposed composite neural network for detection.In order to evaluate the proposed system,we made extensive experiments on HTTP CSIC2010 dataset and a dataset we collected,and the experimental results show the effectiveness of the proposed approach.展开更多
In real-world many internet-based service companies need to closely monitor large amounts of data in order to ensure stable operation of their business.However,anomaly detection for these data with various patterns an...In real-world many internet-based service companies need to closely monitor large amounts of data in order to ensure stable operation of their business.However,anomaly detection for these data with various patterns and data quality has been a great challenge,especially without labels.In this paper,we adopt an anomaly detection algorithm based on Long Short-Term Memory(LSTM)Network in terms of reconstructing KPIs and predicting KPIs.They use the reconstruction error and prediction error respectively as the criteria for judging anomalies,and we test our method with real data from a company in the insurance industry and achieved good performance.展开更多
文摘The development process of complex equipment involves multi-stage business processes,multi-level product architecture,and multi-disciplinary physical processes.The relationship between its system model and various disciplinary models is extremely complicated.In the modeling and integration process,extensive customized development is needed to realize model integration and interoperability in different business scenarios.Meanwhile,the differences in modeling and interaction between different modeling tools make it difficult to support the consistent representation of models in complex scenarios.To improve the efficiency of system modeling and integration in complex business scenarios,a system modeling and integration method was proposed.This method took the Sys ML language kernel as the core and system model function integration as the main line.Through the technical means of model view separation,abstract operation interface,and model view configuration,the model modeling and integration of multi-user,multi-model,multi-view,and different business logic in complex business scenarios were realized.
文摘With the advancements in parameter-efficient transfer learning techniques,it has become feasible to leverage large pre-trained language models for downstream tasks under low-cost and low-resource conditions.However,applying this technique to multimodal knowledge transfer introduces a significant challenge:ensuring alignment across modalities while minimizing the number of additional parameters required for downstream task adaptation.This paper introduces UniTrans,a framework aimed at facilitating efficient knowledge transfer across multiple modalities.UniTrans leverages Vector-based Cross-modal Random Matrix Adaptation to enable fine-tuning with minimal parameter overhead.To further enhance modality alignment,we introduce two key components:the Multimodal Consistency Alignment Module and the Query-Augmentation Side Network,specifically optimized for scenarios with extremely limited trainable parameters.Extensive evaluations on various cross-modal downstream tasks demonstrate that our approach surpasses state-of-the-art methods while using just 5%of their trainable parameters.Additionally,it achieves superior performance compared to fully fine-tuned models on certain benchmarks.
基金The project supported by the National Natural Science Foundation of China(19832050 and 10372100)
文摘A constitutive equation theory of Oldroyd fluid B type,i.e.the co-rotational derivative type,is developed for the anisotropic-viscoelastic fluid of liquid crystalline(LC)polymer.Analyzing the influence of the orientational motion on the material behavior and neglecting the influence,the constitutive equation is applied to a simple case for the hydrodynamic motion when the orientational contribution is neglected in it and the anisotropic relaxation,retardation times and anisotropic viscosi- ties are introduced to describe the macroscopic behavior of the anisotropic LC polymer fluid.Using the equation for the shear flow of LC polymer fluid,the analytical expressions of the apparent viscosity and the normal stress differences are given which are in a good agreement with the experimental results of Baek et al.For the fiber spinning flow of the fluid,the analytical expression of the extensional viscosity is given.
基金Project(10772177) supported by the National Natural Science Foundation of China
文摘Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anisotropic suspension were reported.A new concept of simple anisotropic fluid was introduced.On the basis of anisotropic principle,the simple fluid stress behaviour was described by velocity gradient tensor F and spin tensor W instead of velocity gradient tensor D in the classic Leslie-Ericksen continuum theory.Two relaxation times analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equation of co-rotational type was introduced.More general model LCP-H for the fluid was developed.The unsymmetry of the shear stress was predicted by the present continuum theory for anisotropic viscoelastic fluid-LC polymer liquids.The influence of the relaxation times on material functions was specially studied.It is important to study the unsteady vibrational rotating flow with small amplitudes,as it is a best way to obtain knowledge of elasticity of the LC polymer,i.e.dynamic viscoelasticity.For the shear-unsymmetric stresses,two shear stresses were obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) were introduced by the constitutive equation which was defined by rotating shear rate introduced by author.For the two stability problems of fluid,such as stability of hydrodynamic flow and orientational motion,were discussed.The results show that the polymer suspension systems exhibit anisotropic character.The PNC systems can exhibit significant shear-thinning effects.For more concentrated polymer nano-suspensions,the first normal stress difference change from positive to negative,which is similar to LC polymer behavior.
基金This project was supported by the National Natural Science Foundation of China (No. 19871080).
文摘In this paper a class of real-time parallel modified Rosenbrock methods of numerical simulation is constructed for stiff dynamic systems on a multiprocessor system, and convergence and numerical stability of these methods are discussed. A-stable real-time parallel formula of two-stage third-order and A(α)-stable real-time parallel formula with o ≈ 89.96° of three-stage fourth-order are particularly given. The numerical simulation experiments in parallel environment show that the class of algorithms is efficient and applicable, with greater speedup.
文摘Based on the modeling theoretical research of the amphibious vehicle systems, a simulation computed architecture on the state space expressions of hydrodynamics for amphibious vehicle systems are educed, and simulation computed results of navigation characteristics, vibration-impact characteristics, firing-hitting characteristics for amphibious vehicle on water are given. It is shown that the hydrodynamic research on amphibious vehicle systems is necessary and feasible.
基金Project supported by the National Natural Science Foundation of China (Nos. 62373025, 12332004,62003013, and 11932003)。
文摘This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.
基金the National Natural Science Foundation of China(Nos.11371003 and 11461006)the Special Fund for Scientific and Technological Bases and Talents of Guangxi(No.2016AD05050)+3 种基金the Special Fund for Bagui Scholars of Guangxithe Major Tendering Project of the National Social Science Foundation(No.17ZDA160)the Sichuan Science and Technology Project(No.19YYJC0038)the Fundamental Research Funds for the Central Universities,SWUN(No.2019NYB20)
文摘It is important to evaluate function behaviors and performance features of task scheduling algorithm in the multi-processor system.A novel dynamic measurement method(DMM)was proposed to measure the task scheduling algorithm’s correctness and dependability.In a multi-processor system,task scheduling problem is represented by a combinatorial evaluation model,interactive Markov chain(IMC),and solution space of the algorithm with time and probability metrics is described by action-based continuous stochastic logic(aCSL).DMM derives a path by logging runtime scheduling actions and corresponding times.Through judging whether the derived path can be received by task scheduling IMC model,DMM analyses the correctness of algorithm.Through judging whether the actual values satisfy label function of the initial state,DMM analyses the dependability of algorithm.The simulation shows that DMM can effectively characterize the function behaviors and performance features of task scheduling algorithm.
基金Project(10772177) supported by the National Natural Science Foundation of China
文摘Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.
基金the National Natural Science Foundation of China(60773218)the Natural Science Foundation of Liaoning Province (20072031)
文摘Aiming at the problem of merging heterogeneous semantic taxonomy emerged in Web information integration, a method of building Web classification ontology (WCO) has been proposed. A WCO that is logically consistent with the suggested upper merged ontology (SUMO) is defined, together with axioms needed to classify Web pages. WCO can be used as a foundation of merging heterogeneous semantic taxonomy, and could be used to support Web information integration and classification based Web information retrieval.
文摘Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM.
基金supported by the National Natu-ral Science Foundation of China(No.51675493 and No.51975542)the National Key R&D Program of China(No.2018YFF0300605,No.2019YFF0301802,and No.2019YFB2004802)Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi and Shanxi"1331 Project"Key Subject Construction(1331KSC).
文摘Silicon bulk etching is an important part of micro-electro-mechanical system(MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethylammonium hydroxide(TMAH) solution heated up to boiling point. The monocrystalline silicon wafer is positioned over the solution surface and can be anisotropically etched by the produced vapor. This etching method does not rely on the expensive vacuum equipment used in dry etching. Meanwhile, it presents several advantages like low roughness, high etching rate and high uniformity compared with the conventional wet etching methods. The etching rate and roughness can reach 2.13 μm/min and 1.02 nm, respectively. Furthermore,the diaphragm structure and Al-based pattern on the non-etched side of wafer can maintain intact without any damage during the back-cavity fabrication. Finally, an etching mechanism has been proposed to illustrate the observed experimental phenomenon. It is suggested that there is a water thin film on the etched surface during the solution evaporation. It is in this water layer that the ionization and etching reaction of TMAH proceed, facilitating the desorption of hydrogen bubble and the enhancement of molecular exchange rate. This new etching method is of great significance in the low-cost and high-quality micro-electromechanical system industrial fabrication.
基金This research is supported by program of Key Laboratory of Flight Technology and Flight Safety(FZ2020KF07)Ms.ZaijunWang received the grant.This research is also supported by Postgraduate Innovation Project of CAFUC(X2021-37)Mr.Qianlei Wang received the grant.
文摘How to accurately recognize the mental state of pilots is a focus in civil aviation safety.The mental state of pilots is closely related to their cognitive ability in piloting.Whether the cognitive ability meets the standard is related to flight safety.However,the pilot’s working state is unique,which increases the difficulty of analyzing the pilot’s mental state.In this work,we proposed a Convolutional Neural Network(CNN)that merges attention to classify the mental state of pilots through electroencephalography(EEG).Considering the individual differences in EEG,semi-supervised learning based on improvedK-Means is used in themodel training to improve the generalization ability of the model.We collected the EEG data of 12 pilot trainees during the simulated flight and compared the method in this paper with other methods on this data.The method in this paper achieved an accuracy of 86.29%,which is better than 4D-aNN and HCNN etc.Negative emotion will increase the probability of fatigue appearing,and emotion recognition is also meaningful during the flight.Then we conducted experiments on the public dataset SEED,and our method achieved an accuracy of 93.68%.In addition,we combine multiple parameters to evaluate the results of the classification network on a more detailed level and propose a corresponding scoring mechanism to display the mental state of the pilots directly.
基金The sustentation fund come fron China Academy of Engineering Physics 2003-421050504-12-02
文摘The importance of software residual defects and some prediction residual defects models are introduced. The problem that is not easy adapted to a general model is discussed. The model of prediction residual defects based on BBNs is proposed and the detailed processes of the approach are given.
文摘According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with quality of multi-service and membership function of satisfaction, which integrates the energy consumption of communication and residual and the information of time delay into the membership function of satisfaction to solve the equilibrium factor, so that it can become the optimal routing that balances the network lifetime, transmission delay of data, and node energy consumption of nodes. Simulation experiment shows that adopting the algorithm can make lifecycle of nodes longer and network transmit more data packets at the same time. Experimental results verify the algorithm can effectively balance the network energy, reduce the energy consumption and prolong the network lifetime.
文摘In actual engineering, processing of big data sometimes requires building of mass physical models, while processing of physical model requires relevant math model, thus producing mass multivariate polynomials, the effective reduction of which is a difficult problem at present. A novel algorithm is proposed to achieve the approximation factorization of complex coefficient multivariate polynomial in light of characteristics of multivariate polynomials. At first, the multivariate polynomial is reduced to be the binary polynomial, then the approximation factorization of binary polynomial can produce irreducible duality factor, at last, the irreducible duality factor is restored to the irreducible multiple factor. As a unit root is cyclic, selecting the unit root as the reduced factor can ensure the coefficient does not expand in a reduction process. Chinese remainder theorem is adopted in the corresponding reduction process, which brought down the calculation complexity. The algorithm is based on approximation factorization of binary polynomial and calculation of approximation Greatest Common Divisor, GCD. The algorithm can solve the reduction of multivariate polynomials in massive math models, which can obtain effectively null point of multivariate polynomials, providing a new approach for further analysis and explanation of physical models. The experiment result shows that the irreducible factors from this method get close to the real factors with high efficiency.
基金the Natural Science Foundation of China (Grant No. 61701005)the Domestic Visiting Research Project of Excellent Young Backbone Talents from Anhui Higher Education Institutions (Grant No. gxgnfx2019009)+6 种基金the Key Project of Humanities and Social Sciences Research in Anhui Higher Education Institutions in 2019 (Grant No. SK2019A0242)the Quality Project Foundation of Anhui Province (Grant No. 2017mooc220, No. 2018zhkt079, No. 2015sxzx011, No. 2012sjjd025)the Key Project of Outstanding Young Talents Support Program of Anhui Higher Education Institutions (Grant No. gxyqZD2016128)the Key Project of Natural Science Research in Anhui Higher Education Institutions (Grant No. KJ2015A054, No. KJ2019A0437)the Key Teaching and Research Project of Anhui University of Chinese Medicine (Grant No. 2017xjjy_zd011)the Natural Science key Foundation of Anhui University of Chinese Medicine (Grant No. 2019zrzd11, No. 2018zryb06)the National Innovation and Entrepreneurship Training Program for College Student (Grant No. 20181036 9021, No. 201810369022, No. 201610369044, No. 201710369052).
文摘Compared with western medicine, there are many complicated factors affecting the intrinsic quality of traditional Chinese medicine, because its production needs to be planted, harvested, processed, transported, stored, and sold, etc. Therefore, the internet of things is integrated into the traceability of traditional Chinese medicine, and its key technologies are studied. An XMLbased traceability information exchange model was constructed for traditional Chinese medicine and modeled the traceability process by the finite state machine (FSM). Furthermore, the specific electronic product code (EPC) coding scheme of traditional Chinese medicine was proposed based on the EPC coding structure model. Finally, the effectiveness of the above models and schemes is verified by an example of a traditional Chinese medicine traceability prototype system.
基金National Natural Science Foundation of China(Nos.11847069,11847127)Science Foundation of North University of China(No.XJJ20180030)。
文摘For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.
基金This work is supported in part by the National Natural Science Foundation of China(61871140,61872100,61572153,U1636215,61572492,61672020)the National Key research and Development Plan(Grant No.2018YFB0803504)Open Fund of Beijing Key Laboratory of IOT Information Security Technology(J6V0011104).
文摘Since the web service is essential in daily lives,cyber security becomes more and more important in this digital world.Malicious Uniform Resource Locator(URL)is a common and serious threat to cybersecurity.It hosts unsolicited content and lure unsuspecting users to become victim of scams,such as theft of private information,monetary loss,and malware installation.Thus,it is imperative to detect such threats.However,traditional approaches for malicious URLs detection that based on the blacklists are easy to be bypassed and lack the ability to detect newly generated malicious URLs.In this paper,we propose a novel malicious URL detection method based on deep learning model to protect against web attacks.Specifically,we firstly use auto-encoder to represent URLs.Then,the represented URLs will be input into a proposed composite neural network for detection.In order to evaluate the proposed system,we made extensive experiments on HTTP CSIC2010 dataset and a dataset we collected,and the experimental results show the effectiveness of the proposed approach.
文摘In real-world many internet-based service companies need to closely monitor large amounts of data in order to ensure stable operation of their business.However,anomaly detection for these data with various patterns and data quality has been a great challenge,especially without labels.In this paper,we adopt an anomaly detection algorithm based on Long Short-Term Memory(LSTM)Network in terms of reconstructing KPIs and predicting KPIs.They use the reconstruction error and prediction error respectively as the criteria for judging anomalies,and we test our method with real data from a company in the insurance industry and achieved good performance.