期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Mechanism study on the influence of surface properties on the synthesis of dimethyl carbonate from CO_(2)and methanol over ceria catalysts
1
作者 Lei Dong Shengjie Zhu +4 位作者 Yangyang Yuan Xiaomin Zhang Xiaowei Zhao Yanping Chen Lei Xu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期138-152,共15页
The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts ... The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites. 展开更多
关键词 CeO_(2) Dimethyl carbonate Surface property Methanol activation 2-Cyanopyridine
在线阅读 下载PDF
Regulatory role of peroxynitrite in advanced glycation end products mediated diabetic cardiovascular complications
2
作者 Asis Bala 《World Journal of Diabetes》 SCIE 2024年第3期572-574,共3页
The Advanced Glycation End Products(AGE)binding with its receptor can increase reactive oxygen species(ROS)generation through specific signaling mediators.The effect of superoxide(O2-)and O2-mediated ROS and reactive ... The Advanced Glycation End Products(AGE)binding with its receptor can increase reactive oxygen species(ROS)generation through specific signaling mediators.The effect of superoxide(O2-)and O2-mediated ROS and reactive nitrogen species depends on their concentration and location of formation.Nitric oxide(NO)has anti-inflammatory and anticoagulant properties and a vasodilation effect,but NO can be deactivated by reacting with O_(2)^(-).This reaction between NO and O2-produces the potent oxidant ONOO−.Therefore,ONOO-'s regulatory role in AGEs in diabetic cardiovascular complications must considered as a regulator of cardiovascular complications in diabetes. 展开更多
关键词 DIABETES Cardiovascular complication Advanced glycation end products Reactive oxygen species Reactive nitrogen species PEROXYNITRITE
暂未订购
Classifcation of Gapped Domain Walls in 2+1D Topological Orders through 2-Morita Equivalence
3
作者 Rongge Xu Holiverse Yang 《Chinese Physics Letters》 2025年第7期320-367,共48页
We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(... We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(2)-algebras yield the same condensed topological phase under a two-dimensional anyon condensation process.The relations between different condensable algebras can be translated into their module categories,interpreted physically as gapped domain walls in topological orders.As concrete examples,we interpret the categories of quantum doubles of finite groups and examples beyond group symmetries.Our framework fully elucidates the interplay among condensable𝐸E_(1)-algebras in C,condensable𝐸E_(2)-algebras in C up to 2-Morita equivalence,and Lagrangian algebras in C⊠C. 展开更多
关键词 morita equivalence modular tensor category topological orders condensed topological phase condensable algebras condensable e algebras gapped domain walls
原文传递
Heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl bifunctional electrocatalyst for superior concurrent conversion of glycerol and nitrite
4
作者 Mingdan Wang Pengzuo Chen +1 位作者 Huigang Wang Yanying Zhao 《Journal of Energy Chemistry》 2025年第5期185-193,共9页
The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development ... The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development of efficient bifunctional electrocatalysts.Herein,we put forward a high-efficiency coelectrolysis system by coupling the nitrite reduction reaction(NO_(2)RR)and the glycerol oxidation reaction(GOR)over a novel heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl catalyst.Theβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl shows excellent bifunctional performance with high Faradaic efficiencies of formate(90.1%)and NH_(3)(91.9%)at cell voltage of 1.5 V,high yield rate of formate(89.6 mg h^(-1)cm^(-2))and NH_(3)(36.07 mg h^(-1)cm^(-2))at cell voltage of 1.9 V,and superior stability in an anion exchange membrane co-electrolyzer.The in-situ Raman result confirms the unique Co/Cu-based bimetallic synergistic sites of β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl towards superior GOR performance,while the operando Fourier transform infrared spectroscopy demonstrates the improved protonation kinetics of key intermediates and optimized water dissociation ability ofβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl for high NO_(2)RR activity.Our work illuminates alternative avenues to exploit the innovative and energy-saving technology for the co-production of high-added chemicals. 展开更多
关键词 Heterogeneous catalyst β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl Bifunctional performance Nitrite reduction reaction Glycerol oxidation reaction
在线阅读 下载PDF
Atomic vacancy engineering of Co(OH)F nanoarray toward high-performance ammonia electrosynthesis with waste plastics upgrading
5
作者 Mingdan Wang Qianyu Zhang +4 位作者 Kun Chen Cong Lin Huigang Wang Yanying Zhao Pengzuo Chen 《Journal of Energy Chemistry》 2025年第10期558-565,共8页
Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemica... Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems. 展开更多
关键词 Atomic vacancy Co(OH)F Nanoarray Ammonia electrosynthesis Waste plastics upgrading Co-electrolysis system
在线阅读 下载PDF
On the microstructural,mechanical,damping,wear properties of magnesium alloy AZ91-3 vol.%SiCP-3 vol.%fly ash hybrid composite and property correlation thereof
6
作者 Prince Gollapalli Mridul Pant +1 位作者 A.R.Anil Chandra M.K.Surappa 《Journal of Magnesium and Alloys》 2025年第5期2374-2389,共16页
A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear r... A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear resistance,and many other critical properties.However,at present a comprehensive and robust map correlating different properties in particle-reinforced composites is much lacking.In this work,an industrial grade AZ91 magnesium alloy reinforced with hard SiC and soft fly ash particles(with 3 vol.%each),has been prepared using stir casting followed by hot extrusion at 325℃with a ratio of 21.5.Microstructure of the hybrid composite was characterized using optical and scanning electron microscopes.The composite exhibited a reduction in average grain size from 13.6 to 7.1μm,concomitantly an increase in Vickers hardness from 73 to 111 HV.The tension-compression yield asymmetry ratios of the unreinforced alloy and hybrid composite were 1.165 and 0.976,respectively indicating higher yield strength for the composite under compressive load.The composite exhibited 76%improvement in damping capacity under time sweep mode,and 28%improvement at 423 K under temperature sweep mode.The tribological characteristics of the composite under dry sliding conditions at sliding speeds and loads in the range of 0.5 to 1.5 m s^(-1)and 10 to 30 N,respectively showed higher wear resistance than the unreinforced alloy.The composite showed 23%improvement in sliding wear resistance at a load of 20 N and a speed of 1 m s^(-1).Finally,efforts have been made to understand the influence of one property on the other by developing statistical property correlation maps from the properties obtained in this study and from the literature.These maps are expected to help in the design of hybrid Metal Matrix Composites for a variety of targeted applications in different sectors. 展开更多
关键词 Hybrid metal matrix composite Tensile and compressive properties FRACTOGRAPHY DAMPING WEAR Property correlation map
在线阅读 下载PDF
Integrated Fischer-Tropsch synthesis and heterogeneous hydroformylation technologies toward high-value commodities from syngas
7
作者 Ziang Zhao Miao Jiang +6 位作者 Cunyao Li Yihui Li Hejun Zhu Ronghe Lin Shenfeng Yuan Li Yan Yunjie Ding 《Chinese Journal of Catalysis》 2025年第6期16-38,共23页
Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,a... Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,and process optimization have significantly improved the efficiency,selectivity,and sustainability of these processes.This Account introduces the relevant research activities in the Research Center for Catalysis in Syngas Conversion and Fine Chemicals(DNL0805)of Dalian Institute of Chemical Physics(DICP),Chinese Academy of Sciences.The reactions of interests include FTS,heterogeneous hydroformylation of olefins,alcohol dehydration and oxidation,andα-olefin polymerization,with the emphasis on developing innovative catalysts and processes to address the challenges of traditional processes.Exemplified by the discovery of robust Co-Co_(2)C/AC for FTS and Rh_(1)/POPs-PPh_(3) for heterogeneous hydroformylation of olefins,it demonstrates how lab-scale fundamental understandings on the active sites of catalysts leads to pilot-plant scale-up and finally commercial technologies.Perspectives on the challenges and directions for future developments in these exciting fields are provided. 展开更多
关键词 COMMERCIALIZATION Fischer-Tropsch synthesis Heterogeneous catalysis Olefin hydroformylation Processes development
在线阅读 下载PDF
Unstable regions of anisotropic relativistic spheres in higher dimensions
8
作者 M Yousaf Bander Almutairi +2 位作者 M Z Bhatti Z Yousaf A S Khan 《Communications in Theoretical Physics》 2025年第3期112-129,共18页
In this work,we consider the collapse of a D-dimensional sphere in the framework of a higher-dimensional spherically symmetric space-time in which the gravitational action chosen is claimed to be somehow linked to the... In this work,we consider the collapse of a D-dimensional sphere in the framework of a higher-dimensional spherically symmetric space-time in which the gravitational action chosen is claimed to be somehow linked to the D-dimensional modified term.This work investigates the criteria for the dynamical instability of anisotropic relativistic sphere systems with D-dimensional modified gravity.The certain conditions are applied that lead to the collapse equation and their effects on adiabatic indexΓin both Newtonian(N)and Post-Newtonian(PN)regimes by using a perturbation scheme.The study explores that theΓplays a crucial role in determining the degree of dynamical instability.This index characterizes the fluid's stiffness and has a significant impact on defining the ranges of instability.This systematic investigation demonstrates the influence of various material properties such as anisotropic pressure,kinematic quantities,mass function,D-dimensional modified gravity parameters,and the radial profile of energy density on the instability of considered structures during their evolution.This work also displays the dynamical behavior of spherically symmetric fluid configuration via graphical approaches. 展开更多
关键词 GRAVITATION dynamical instability mathematical and relativistic aspects of cosmology mathematical physics
原文传递
Preparation and Corrosion Resistance Mechanism of Magnesium-Lithium Alloy Micro-arc Oxidation/Quaternary LDHs@GO Self-healing Composite Film
9
作者 Zhenzhen Tian Rongqian Wu +7 位作者 Fubing Yu Yan Zhou Wenhui Yao Yuan Yuan Zhihui Xie Yanlong Ma Atrens Andrej Liang Wu 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1545-1558,共14页
Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports t... Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports the successful hydrothermal preparation of a MgLiAlCe-LDHs@GO flm on a MAO-coated Mg–Li alloy following Ce confnement.The graphene oxide(GO)sheet increased the difusion path of the corrosive media,and the addition of rare-earth cerium ions(Ce^(3+))endowed the flm with a certain self-healing ability,which signifcantly improved the corrosion resistance of the flm,and the corrosion current density(icorr)reached 3.27×10^(−8)A cm^(−2).The synergistic action of GO and Ce^(3+)can achieve long-term corrosion protection for the substrate.The corrosion resistance mechanism of MgLiAlCe-LDHs@GO flm was discussed by the scanning vibration electrode technique(SVET). 展开更多
关键词 Micro-arc oxidation(MAO) Magnesium-lithium alloy Quaternary layer doubled hydroxides(LDHs) Graphene oxide Corrosion mechanism
原文传递
High Resolution Crossed Molecular Beams Study of the H+HD→H2+D Reaction 被引量:1
10
作者 Ji-wei Sang Dao-fu Yuan +6 位作者 Wen-tao Chen Sheng-rui Yu Chang Luo Si-wen Wang Tao Wang Xue-ming Yang Xing-an Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第1期123-128,I0003,共7页
The H+H2 reaction is the simplest chemical reaction system and has long been the prototype model in the study of reaction dynamics. Here we report a high resolution experimental investigation of the state-to-state rea... The H+H2 reaction is the simplest chemical reaction system and has long been the prototype model in the study of reaction dynamics. Here we report a high resolution experimental investigation of the state-to-state reaction dynamics in the H+HD→H2+D reaction by using the crossed molecular beams method and velocity map ion imaging technique at the collision energy of 1.17 eV. D atom products in this reaction were probed by the near threshold 1+1'(vacuum ultraviolet+ultraviolet) laser ionization scheme. The ion image with both high angular and energy resolution were acquired. State-to-state differential cross sections was accurately derived. Fast forward scattering oscillations, relating with interference effects in the scattering process, were clearly observed for H2 products at H2(v'=0,j'=1) and H2(v'=0,j'=3) rovibrational levels. This study further demonstrates the importance of measuring high-resolution differential cross sections in the study of state-to-state reaction dynamics in the gas phase. 展开更多
关键词 Crossed molecular beams Velocity map ion imaging Threshold ionization Forward scattering oscillations High resolution Differential cross sections
在线阅读 下载PDF
Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia 被引量:1
11
作者 Sajid Mahmood Haiyan Wang +2 位作者 Fang Chen Yijun Zhong Yong Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期3-16,共14页
Electrochemical nitrogen reduction reaction(ENRR) provides a promising strategy to achieve sustainable synthesis of ammonia. However, despite great efforts devoted to this research field, the problems such as low ener... Electrochemical nitrogen reduction reaction(ENRR) provides a promising strategy to achieve sustainable synthesis of ammonia. However, despite great efforts devoted to this research field, the problems such as low energy efficiency and weak selectivity still impede its practical implementation. Most of the research to date has been concentrated on creating sophisticated electrocatalysts, and adequate knowledge of electrolytes is still lacking. Herein, the recent progress in electrolytes for ENRR, including alkaline, neutral,acidic, water-in-salt, organic, ionic liquid, and mixed water-organic electrolytes, is thoroughly reviewed to obtain an in-depth understanding of their effects on electrocatalytic performance. Recently developed representative electrocatalysts in various types of electrolytes are also introduced, and future research priorities of different electrolytes are proposed to develop new and efficient ENRR systems. 展开更多
关键词 Electrocatalytic nitrogen reduction AMMONIA Electrolytes Production rate Faradaic efficiency
原文传递
Ultrafast Decay Dynamics of N-Ethylpyrrole Excited to the S_(1)Electronic State:A Femtosecond Time-Resolved Photoelectron Imaging Study
12
作者 Wen-peng Yuan Bai-hui Feng +4 位作者 Dong-yuan Yang Yan-jun Min Sheng-rui Yu Guo-rong Wu Xue-ming Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第4期386-392,I0002,共8页
N-ethylpyrrole is one of ethylsubstituted derivatives of pyrrole and its excited-state decay dynamics has never been explored.In this work,we investigate ultrafast decay dynamics of N-ethylpyrrole excited to the S_(1)... N-ethylpyrrole is one of ethylsubstituted derivatives of pyrrole and its excited-state decay dynamics has never been explored.In this work,we investigate ultrafast decay dynamics of N-ethylpyrrole excited to the S_(1)electronic state using a femtosecond time-resolved photoelectron imaging method.Two pump wavelengths of 241.9 and 237.7 nm are employed.At 241.9 nm,three time constants,5.0±0.7 ps,66.4±15.6 ps and 1.3±0.1 ns,are derived.For 237.7 nm,two time constants of 2.1±0.1 ps and 13.1±1.2 ps are derived.We assign all these time constants to be associated with different vibrational states in the S_(1)state.The possible decay mechanisms of different S_(1)vibrational states are briefly discussed. 展开更多
关键词 Photoelectron spectrum Pump/probe Femtosecond time-resolved
在线阅读 下载PDF
Excited-State Double Proton Transfer of 1,8-Dihydroxy-2-Naphthaldehyde:a MS-CASPT2//CASSCF Study
13
作者 Bin-Bin Xie Ke-Xin Wang +2 位作者 Pei-Ke Jia Xiang-Yang Liu Ganglong Cui 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第3期422-430,I0001,共10页
Excited-state double proton transfer(ESDPT)is a controversial issue which has long been plagued with theoretical and experimental communities.Herein,we took 1,8-dihydroxy-2-naphthaldehyde(DHNA)as a prototype and used ... Excited-state double proton transfer(ESDPT)is a controversial issue which has long been plagued with theoretical and experimental communities.Herein,we took 1,8-dihydroxy-2-naphthaldehyde(DHNA)as a prototype and used combined complete active space selfconsistent field(CASSCF)and multi-state complete active-space second-order perturbation(MS-CASPT2)methods to investigate ESDPT and excited-state deactivation pathways of DHNA.Three different tautomer minima of S1-ENOL,S1-KETO-1,and S1-KETO-2 and two crucial conical intersections of S1 S0-KETO-1 and S1 S0-KETO-2 in and between the S0 and S1 states were obtained.S1-KETO-1 and S1-KETO-2 should take responsibility for experimentally observing dual-emission bands.In addition,two-dimensional potential energy surfaces(2 D-PESs)and linear interpolated internal coordinate paths connecting relevant structures were calculated at the MS-CASPT2//CASSCF level and confirmed a stepwise ESDPT mechanism.Specifically,the first proton transfer from S1-ENOL to S1-KETO-1 is barrierless,whereas the second one from S1-KETO-1 to S1-KETO-2 demands a barrier of ca.6.0 kcal/mol.The linear interpolated internal coordinate path connecting S1-KETO-1(S1-KETO-2)and S_(1) S0-KETO-1(S1 S0-KETO-2)is uphill with a barrier of ca.12.0 kcal/mol,which will trap DHNA in the S_(1) state while therefore enabling dual-emission bands.On the other hand,the S1/S0 conical intersections would also prompt the S_(1) system to decay to the S_(0) state,which could be to certain extent suppressed by locking the rotation of the C5-C8-C9-O10 dihedral angle.These mechanistic insights are not only helpful for understanding ESDPT but also useful for designing novel molecular materials with excellent photoluminescent performances. 展开更多
关键词 Excited-state double proton transfer 1 8-Dihydroxy-2-naphthaldehyde MS-CASPT2//CASSCF
在线阅读 下载PDF
Crossed Beam Study on the F+D2→DF+D Reaction at Hyperthermal Collision Energy of 23.84 kJ/mol
14
作者 Hei-long Wang Shu Su +4 位作者 Sheng-rui Yu Li Che Guo-rong Wu Kai-jun Yuan Xue-ming Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第1期151-156,I0003,共7页
We presented an experimental apparatus combining the H-atom Rydberg tagging time-of-flight technique and the laser detonation source for studying crossed beam reactions at hyperthermal collision energies. The prelimin... We presented an experimental apparatus combining the H-atom Rydberg tagging time-of-flight technique and the laser detonation source for studying crossed beam reactions at hyperthermal collision energies. The preliminary study of the F+D2→DF+D reaction at hyperthermal collision energy of 23.84 kJ/mol was performed. Two beam sources were used in this study: one is the hyperthermal F beam source produced by a laser detonation process, and the other is D2 beam source generated by liquid-N2 cooled pulsed valve. Vibrational state-resolved di erential cross sections (DCSs) of product for the title reaction were determined. From the product vibrational state-resolved DCS, it can be concluded that products DF(v'=0, 1, 2, 3) are predominantly distributed in the sideway and backward scattering directions at this collision energy. However, the highest vibrational excited product DF(v'=4), is clearly peaked in the forward direction. The probable dynamical origins for these forward scattering products were analyzed and discussed. 展开更多
关键词 Crossed molecular beam Hyperthermal collision energy Rydberg tagging laser detonation
在线阅读 下载PDF
Subloading-elastoplastic constitutive equation of glass
15
作者 Koichi Hashiguchi Hiroki Yamazki +3 位作者 Shingo Nakane Yoshinari Kato Gustavo Rosales-Sosa Masami Ueno 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期221-232,共12页
Elastoplastic constitutive equation of glass is proposed in this article,which is formulated based on the subloading surface model which possesses the various distinguished advantages for the description of the plasti... Elastoplastic constitutive equation of glass is proposed in this article,which is formulated based on the subloading surface model which possesses the various distinguished advantages for the description of the plastic deformation,i.e.,the smooth elastic-plastic transition,the continuous variation of the tangent stiff-ness modulus tensor,the automatic controlling function to attract the stress to the yield surface during the plastic deformation process,etc.It would be the firstly proposed three-dimensional elastoplastic con-stitutive equation of glass,which is furnished with the basic properties,e.g.the ellipsoidal yield surface with the dependence of the third deviatoric stress invariant,undergoing the flattering to the deviatoric direction with the plastic compression and the plastic volumetric hardening with the associated flow rule.The validity of the description of the deformation behavior of glass will be verified by comparisons with some test data for silica glass specimens. 展开更多
关键词 GLASS Constitutive equation ELASTICITY PLASTICITY Yield surface DENSIFICATION Deviatoric deformation
原文传递
Tuning the product selectivity of dimethyl oxalate hydrogenation over WO_(x) modified Cu/SiO_(2) catalysts
16
作者 Zheng Li Zhuo Ma +9 位作者 Yihui Li Ziang Zhao Yuan Tan Ziyin Liu Xingkun Chen Nian Lei Huigang Wang Wei Lu Hejun Zhu Yunjie Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期128-138,I0004,共12页
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle... Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa. 展开更多
关键词 ETHANOL Dimethyl oxalate Selective hydrogenation Methyl acetate WCu/SiO_(2)catalyst
在线阅读 下载PDF
Efficient hydrogenolysis of fructose to 1,2-propanediol over bifunctional Ru-WO_(x)-MgO_(y) catalysts under mild reaction conditions via enhancing the chemoselective cleavage of C-C bonds
17
作者 Shuang Luo Tie Shu +6 位作者 Min Mao Haijie Yu Yuxin Zheng Daqian Ding Lingmei Liu Kexin Yao Jianjian Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期311-321,共11页
Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low e... Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low efficiency and harsh reaction conditions.Here,we have successfully synthesized a novel bifunctional Ru-WO_(x)-MgO_(y) catalyst through a facile'one-pot'solvothermal method.Remarkably,this catalyst exhibits exceptional catalytic performances in the conversion of fructose to 1,2-PDO under mild reaction conditions.The yield of 1,2-PDO is up to 56.2%at 140°C for 4 h under an ultra-low hydrogen pressure of only 0.2 MPa,surpassing the reported results in recent literature(below 51%).Comprehensive characterizations and density functional theory(DFT)calculations reveal that the presence of oxygen vacancies in the Ru-WO_(x)-MgO_(y) catalyst,serving as active acidic sites,facilitates the chemoselective cleavage of C-C bonds in fructose,which leads to the generation of active intermediates and ultimately resulted in the high yield of 1,2-PDO. 展开更多
关键词 Biomass FRUCTOSE 1 2-PROPANEDIOL Retroaldol condensation Heterogenous catalysis
在线阅读 下载PDF
Engineering asymmetric electronic structure of cobalt coordination on CoN_(3)S active sites for high performance oxygen reduction reaction
18
作者 Long Chen Shuhu Yin +9 位作者 Hongbin Zeng Jia Liu Xiaofeng Xiao Xiaoyang Cheng Huan Huang Rui Huang Jian Yang Wen-Feng Lin Yan-Xia Jiang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期494-502,共9页
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform... The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance. 展开更多
关键词 Fuel cells Oxygen reduction reaction Coordination symmetry CoN_(3)S H_(2)O_(2)selectivity
在线阅读 下载PDF
MOF-derived Cu embedded into N-doped mesoporous carbon as a robust support of PdAu nanocatalysts for ethanol electrooxidation
19
作者 Yu-Fu Huang Peng Wu +10 位作者 Jun-Ping Tang Jian Yang Jing Li Shuai Chen Xue-Ling Zhao ChengChen Bin-Wei Zhang Yan-Yun Ma Wei-Heng Shi Dong-Hai Lin Shi-Gang Sun 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1083-1094,共12页
Metal-organic frameworks(MOFs)h ave attracted widespread attention due to their large surface area and porous structure.Rationally designing the nanostructures of MOFs to promote their application in ethanol electroox... Metal-organic frameworks(MOFs)h ave attracted widespread attention due to their large surface area and porous structure.Rationally designing the nanostructures of MOFs to promote their application in ethanol electrooxidation is still a challenge.Here,a novel Cu-NCNs(Cu-nitrogen-doped carbon nanotubes)support was synthesized by pyrolysis of melamine(MEL)and Cu-ZIF-8 together,and then,Pd-Au nanoalloys were loaded by sodium borohydride reduction method to prepare PdAu@Cu-NCNs catalysts.The generating mesoporous carbon with high specific surface area and favorable electron and mass transport can be used as a potential excellent carrier for PdAu nanoparticles.In addition,the balance of catalyst composition and surface structure was tuned by controlling the content of Pd and Au.Thus,the best-performed Pd_(2)Au_(2)@Cu-NCN-1000-2(where 1000 means the carrier calcination temperature,and 2 means the calcination constant temperature time)catalyst exhibits better long-term stability and electrochemical activity for ethanol oxidation in alkaline media(4.80 A·mg^(-1)),which is 5.05 times higher than that of commercial Pd/C(0.95 A·mg^(-1)).Therefore,this work is beneficial to further promoting the application of MOFs in direct ethanol fuel cells(DEFCs)and can be used as inspiration for the design of more efficient catalyst support structures. 展开更多
关键词 Metal-organic frameworks(MOFs) N-DOPED Mesoporous carbon PdAu Ethanol electrooxidation
原文传递
Building Custom Spreadsheet Functions with Python: End-User Software Engineering Approach
20
作者 Tamer Bahgat Elserwy Atef Tayh Nour El-Din Raslan +1 位作者 Tarek Ali Mervat H. Gheith 《Journal of Software Engineering and Applications》 2024年第5期246-258,共13页
End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data a... End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment. 展开更多
关键词 End-User Software Engineering Custom Spreadsheet Functions (CSFs)
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部