期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Vat photopolymerization 3D printing of Al_(2)O_(3) ceramic cores with TPMS micro lattice structure
1
作者 Xiao-fei Zhai Jing-yi Chen +4 位作者 Xue-qin Zhang Yuan-hong Qian Rong Chen Wei Zhang Ru-jie He 《China Foundry》 2025年第5期565-573,共9页
The complex ceramic core used for hollow turbine blades requires a high porosity and a high fiexural strength. For a better balance between porosity and fiexural strength, ceramic materials with porous structures are ... The complex ceramic core used for hollow turbine blades requires a high porosity and a high fiexural strength. For a better balance between porosity and fiexural strength, ceramic materials with porous structures are preferred. In order to achieve the transition from disordered pore formation to ordered pore formation, Al_(2)O_(3) ceramic cores with triply periodic minimal surface(TPMS) micro lattice structures with different structural configurations(gyroid, diamond, and neovius) and different volume fractions of lattice structures(30, 40, and 50, vol.%) were designed and prepared by vat photopolymerization 3D printing. The effects of structural configuration and volume fraction of the lattice structure on the following structural shrinkage, microstructure, and flexural strength were investigated. The shrinkage relationship of the three lattice configurations is: neovius>diamond>gyroid. Besides, it is found that with an increase in the volume fraction of the 3D printed Al_(2)O_(3) ceramic micro lattice structures, their fiexural strength correspondingly increases ranging from 54.95 MPa to 139.1 MPa. The maximum average fiexural strength of the 3D printed Al_(2)O_(3) ceramic micro lattice structures is obtained when the structural configuration is diamond and with a volume fraction of 50vol.%, which is 139.1 MPa. Even when the volume fraction of the lattice structure is 30vol.%, that is to say the porosity is 70%, the fiexural strength is as high as 50-70 MPa, which can still be maintained at a high level. In addition, when the volume fraction of the lattice structure is a certain value, the sample with diamond configuration has a higher strength. The internal pore morphology, pore size, and porosity of the cores are precisely controlled, achieving both a high porosity and a high strength. Therefore, this study maintains high porosity and high strength simultaneously, providing a new lattice structure design idea for 3D printed ceramic cores. 展开更多
关键词 alumina ceramic cores vat photopolymerization 3D printing micro lattice microstructure mechanical property
在线阅读 下载PDF
Circumventing brittleness of 3D-printed Al_(2)O_(3)cellular ceramic structures via compositing with polyurea
2
作者 Xue-Qin Zhang Ru-Yue Su +4 位作者 Xiong Gao Jing-Yi Chen Guo Liu Ru-Jie He Ying Li 《Rare Metals》 SCIE EI CAS CSCD 2024年第11期5994-6005,共12页
Benefiting from excellent mechanical properties and low density,cellular ceramic structures(CCSs)are competitive candidates as structural components.However,inherent brittleness from strong chemical bonds among atoms ... Benefiting from excellent mechanical properties and low density,cellular ceramic structures(CCSs)are competitive candidates as structural components.However,inherent brittleness from strong chemical bonds among atoms extremely impeded CCSs'application.Natural materials occupied outstanding strength and toughness simultaneously due to the dual-phase interpenetrated structure.Inspired by natural materials,it was proposed to fabricate coating covered and fulfilled polyurea/CCS interpenetrated composites(C/CCSs and B/CCSs)to circumvent the brittleness of 3D-printed Al_(2)O_(3)CCSs.It was demonstrated that polyurea coating had less effect on the compressive strength of C/CCSs but tremendously improved their energy-absorbing ability.The energy-absorbing ability of C/CCSs was improved from26.48-52.57 kJ·m^(-3)of CCSs to 1.04-1.89 MJ·m^(-3)because of the extended plateau stage.Furthermore,compressive strength and energy-absorbing ability of B/CCSs were strengthened to 1.33-1.36 and 2.84-4.61 times of C/CCSs,respectively.Besides,failure mode of C/CCSs changed from localized deformation to fracturing entirely with the increase in relative density of CCSs inside,which was the same as that of CCSs.However,with the help of polyurea coating,C/CCSs were still intact at strains up to60%,which would neve r fail catastrophically as CCSs at low strains.B/CCSs tended to fracture as a whole,which was not influenced by relative density of pristine CCSs.It was believed that this work provided a creative way to circumvent the brittleness of CCSs and improve their mechanical performances. 展开更多
关键词 Cellular ceramic structures Dual-phase interpenetrated composites Energy-absorbing ability Compressive strength 3D printing
原文传递
Experimental study of solid-liquid origami composite structures with improved impact resistance
3
作者 Shuheng Wang Zhanyu Wang +5 位作者 Bei Wang Zhi Liu Yunzhu Ni Wuxing Lai Shan Jiang Yong An Huang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期118-123,共6页
In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and... In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and fabricated,namely air,water,and shear thickening fluid(STF).Quasi-static compression and drop-weight impact experiments were carried out to compare and reveal the static and dynamic mechanical behavior of these structures.The results from drop-weight impact experiments demonstrated that the solid-liquid Kresling origami composite structures exhibited superior yield strength and reduced peak force when compared to their empty counterparts.Notably,the Kresling origami structures filled with STF exhibited significantly heightened yield strength and reduced peak force.For example,at an impact velocity of 3 m/s,the yield strength of single-layer STF-filled Kresling origami structures increased by 772.7%and the peak force decreased by 68.6%.This liquid-solid origami composite design holds the potential to advance the application of origami structures in critical areas such as aerospace,intelligent protection and other important fields.The demonstrated improvements in impact resistance underscore the practical viability of this approach in enhancing structural performance for a range of applications. 展开更多
关键词 Solid-liquid design Origami structure Impact resistance Shear thickening fluid
在线阅读 下载PDF
Failure Behavior and Mechanism of Vat Photopolymerization Additively Manufactured Al_(2)O_(3) Ceramic Lattice Structures
4
作者 Keqiang Zhang Xueqin Zhang +3 位作者 Qiaoyu Meng Bin Zhang Zhaoliang Qu Rujie He 《Additive Manufacturing Frontiers》 2024年第4期166-177,共12页
Vat photopolymerization additive manufacturing produces lightweight load-bearing ceramic lattice structures that have flexibility,time-efficiency,and high precision,compared to conventional technology.However,understa... Vat photopolymerization additive manufacturing produces lightweight load-bearing ceramic lattice structures that have flexibility,time-efficiency,and high precision,compared to conventional technology.However,understanding the compression behavior and failure mechanism of such structures under loading remains a challenge.In this study,considering the correlation between the strut angle and bearing capacity,body-centered tetragonal(BCT)lattice structures with varying angles are designed based on a body-centered cubic(BCC)structure.BCT Al_(2)O_(3) ceramic lattice structures with varying angles are fabricated by vat photopolymerization.The mechanical properties,deformation process,and failure mechanism of the Al_(2)O_(3) ceramic lattice structures are characterized through a combination of ex-and in-situ X-ray computed tomography(X-CT)compression testing and analyzed using a finite element method(FEM)at macro-and micro-levels.The results demonstrate that as the angle increases,the stress concentration gradually expands from the node to the strut,resulting in an increased loadbearing capacity.Additionally,the failure mode of the Al_(2)O_(3) ceramic lattice structures is identified as diagonal slip shear failure.These findings provide a greater understanding of ceramic lattice structure failures and design optimization approaches. 展开更多
关键词 Ceramic lattice structure Vat photopolymerization additive manufacturing Ex-and in-situ X-ray computed tomography(X-CT) Compression behavior Failure mechanism
在线阅读 下载PDF
Recent progress on electrodeposition of metal/alloy films or coatings in deep eutectic solvents
5
作者 Man-peng LIN Han-dong JIAO +5 位作者 Rui YUAN Le-yang LI Lin-lin WANG Rui-yang SUN Dong-hua TIAN Shu-qiang JIAO 《Transactions of Nonferrous Metals Society of China》 2025年第9期2803-2821,共19页
The development of low-energy consumption and environmentally friendly electrodeposition of metal/alloy films or coatings is presently one of the primary topics for the research community.For this purpose,deep eutecti... The development of low-energy consumption and environmentally friendly electrodeposition of metal/alloy films or coatings is presently one of the primary topics for the research community.For this purpose,deep eutectic solvents(DESs)are valued as electrolytes for their advantages of low operating temperature and wide electrochemical windows.At present,there is large amount of literature on this emerging field,but there are no specialized reviews of these studies.Here,after a brief introduction of DESs’concept and history,we comprehensively reviewed the lastest progress on the metal/alloy electrodeposition in DESs.Additionally,we discussed the key influence factors of the electrodeposition process and analyzed the corresponding mechanisms.Based on these,we emphasized the importance of the establishment of predictive models for dealing with the challenges in large-scale applications. 展开更多
关键词 recent progress ELECTRODEPOSITION metal/alloy films deep eutectic solvents electrode process
在线阅读 下载PDF
Predicting surface roughness of carbon/phenolic composites in extreme environments using machine learning
6
作者 Tong Shang Jingran Ge +2 位作者 Jing Yang Maoyuan Li Jun Liang 《Acta Mechanica Sinica》 2025年第4期11-26,共16页
In thermal protection structures,controlling and optimizing the surface roughness of carbon/phenolic(C/Ph)composites can effectively improve thermal protection performance and ensure the safe operation of carriers in ... In thermal protection structures,controlling and optimizing the surface roughness of carbon/phenolic(C/Ph)composites can effectively improve thermal protection performance and ensure the safe operation of carriers in high-temperature environments.This paper introduces a machine learning(ML)framework to forecast the surface roughness of carbon-phenolic composites under various thermal conditions by employing an ML algorithm derived from historical experimental datasets.Firstly,ablation experiments and collection of surface roughness height data of C/Ph composites under different thermal environments were conducted in an electric arc wind tunnel.Then,an ML model based on Ridge regression is developed for surface roughness prediction.The model involves incorporating feature engineering to choose the most concise and pertinent features,as well as developing an ML model.The ML model considers thermal environment parameters and feature screened by feature engineering as inputs,and predicts the surface height as the output.The results demonstrate that the suggested ML framework effectively anticipates the surface shape and associated surface roughness parameters in various heat flow conditions.Compared with the conventional 3D confocal microscope scanning,the method can obtain the surface topography information of the same area in a much shorter time,thus significantly saving time and cost. 展开更多
关键词 Carbon/phenolic composites Machine learning Linear ablation rate SURFACEROUGHNESS
原文传递
Mechano-electrochemical Coupling Deformation in Layered Electrode Materials:A Review of Current Research and Future Directions
7
作者 Jia Chang Le Yang +2 位作者 Peng Wang Wei-Li Song Yana Wang 《Acta Mechanica Solida Sinica》 2025年第3期358-368,共11页
Layered materials,such as graphite and molybdenum disulfide,are promising for electrode materials and microelectronic devices due to their excellent ion-intercalating properties.However,the intercalation and de-interc... Layered materials,such as graphite and molybdenum disulfide,are promising for electrode materials and microelectronic devices due to their excellent ion-intercalating properties.However,the intercalation and de-intercalation of ions,causing structural deformation and material property variations,would affect battery performance and alter external field responses.The complex problem coupling multiphysics is significant for study and poses a crucial research challenge.This paper reviews the coupling between mechanics,electrochemistry,and electrics during the reaction process,including in situ experimental characterization,theoretical modeling,and design considerations at various scales.Current research has focused on experimental observations beyond the nanoscale and continuum phenomenological models.Further advancements in characterizing layered structural evolution,electron cloud interactions at the atomic level,and developing physics-based multi-field models are essential. 展开更多
关键词 Layered materials Mechano-electrochemical coupling DEFORMATION BATTERY
原文传递
Brief review of external physical field-boosted low-temperature electrodeposition for metals and alloys
8
作者 Junjian Zhou Zhiyuan Li +4 位作者 Qi Wang Na Li Xu Li Yana Wang Weili Song 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期992-1007,共16页
Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is g... Electrochemical metallurgy at low temperature(<473 K)shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner.However,the kinetics of the electrodeposition process is generally slow at low temperature,resulting in large overpotential and low current efficiency.Thus,the application of external physical fields has emerged as an effective strategy for improving the mass and charge transfer processes during electrochemical reactions.This review highlights the challenges associated with low-temperature electrochemical processes and briefly discusses recent achievements in optimizing electrodeposition processes through the use of external physical fields.The regulating effects on the optimization of the electrodeposition process and the strategies for select-ing various external physical fields,including magnetic,supergravity,and ultrasonic fields are summarized from the perspectives of equipment and mechanisms.Finally,advanced methods for in-situ characterization of external physical field-assisted electrodeposition processes are reviewed to gain a deeper understanding of metallic electrodeposition.An in-depth exploration of the mechanism by which external physical fields affect the electrode process is essential for enhancing the efficiency of metal extraction at low temperatures. 展开更多
关键词 low-temperature electrodeposition external physical field electrode kinetics low-temperature electrolyte in-situ characteriz-ation methods
在线阅读 下载PDF
Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM 被引量:23
9
作者 Hao ZHOU Xiaoyu ZHANG +4 位作者 Huizhong ZENG Huning YANGa Hongshuai LEI Xiao LI Yaobing WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第7期1727-1732,共6页
Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers ... Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers add up to such a large value that restricts the employment of scientific devices due to the limit of rocket capacity. A lightweight structure of phase-change thermal controllers has been one of the main focuses of spacecraft design engineering. In this work, we design a lightweight phase-change thermal controller structure based on lattice cells. The structure is manufactured entirely with AlSi10 Mg by direct metal laser melting. The dimensions of the structure are 230 mm × 170 mm × 15 mm, and the mass is 190 g, which is 60% lighter than most traditional structures(500–600 g) with the same dimensions. The 3 D-printed structure can reduce the risk of leakage at soldering manufacture by a welding process. Whether the strength of the designed structure is sufficient is determined through mechanical analysis and experiments. Thermal test results show that the thermal capacity of the lattice-based thermal controller is increased by50% compared to that of traditional controllers with the same volume. 展开更多
关键词 LATTICE structure LIGHTWEIGHT Selective laser melting(SLM) SPACECRAFT Thermal controller
原文传递
Microstructure and mechanical properties of TA15/TC11 graded structural material by wire arc additive manufacturing process 被引量:13
10
作者 He WANG Shu-yuan MA +2 位作者 Jia-chen WANG Tao LU Chang-meng LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2323-2335,共13页
A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical prope... A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical properties of the as-deposited GSM were all characterized to investigate their variations along the deposition direction.The results indicate that from TA15 to TC11,the grain size decreases and a transition from columnar grains to equiaxed grains occurs.The content of alloy element alters greatly within a short distance,and the width of the mutation zone is 800μm.Both TA15 and TC11 regions exhibit basketweave microstructure withα-phase andβ-phase.However,during the transition from TA15 to TC11,theα-lath becomes fine,which leads to an increase in microhardness.The tensile test shows that the bonding strength at the interface is higher than the longitudinal strength of TA15,and the lateral elongation at the interface is higher than that of TA15 and TC11. 展开更多
关键词 wire arc additive manufacturing graded structural material grain morphology microstructure mechanical properties
在线阅读 下载PDF
Compressive properties and energy absorption of BCC lattice structures with bio-inspired gradient design 被引量:4
11
作者 Fuchao Gao Qinglei Zeng +2 位作者 Jing Wang Zengfei Liu Jun Liang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第1期110-122,共13页
Inspired by the gradient structure of the nature,two gradient lattice structures,i.e.,unidirectional gradient lattice(UGL)and bidirectional gradient lattice(BGL),are proposed based on the body-centered cubic(BCC)latti... Inspired by the gradient structure of the nature,two gradient lattice structures,i.e.,unidirectional gradient lattice(UGL)and bidirectional gradient lattice(BGL),are proposed based on the body-centered cubic(BCC)lattice to obtain specially designed mechanical behaviors,such as load-bearing and energy absorption capacities.First,a theoretical model is proposed to predict the initial stiffness of the gradient lattice structure under compressive loading,and validated against quasi-static compression tests and finite element models(FEMs).The deformation and failure mechanisms of the two structures are further studied based on experiments and simulations.The UGL structure exhibits a layer-by-layer failure mode,which avoids structure-wise shear failure in uniform structures.The BGL structure presents a symmetry deformation pattern,and the failure initiates at the weakest part.Finally,the energy absorption behaviors are also discussed.This study demonstrates the potential application of gradient lattice structures in load-transfer-path modification and energy absorption by topology design. 展开更多
关键词 Gradient lattice structure Quasi-static compression test Mechanical performance Finite element analysis Energy absorption
原文传递
Electronic structures and strengthening mechanisms of superhard high-entropy diborides 被引量:5
12
作者 Gang Yao William-Yi Wang +9 位作者 Pei-Xuan Li Ke Ren Jia-Qi Lu Xing-Yu Gao De-Ye Lin Jun Wang Yi-Guang Wang Hai-Feng Song Zi-Kui Liu Jin-Shan Li 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期614-628,共15页
High-entropy diborides(HEBs)have attracted extensive research due to their potential ultra-high hardness.In the present work,the effects of transition metals(TM)on lattice parameters,electron work function(EWF),bondin... High-entropy diborides(HEBs)have attracted extensive research due to their potential ultra-high hardness.In the present work,the effects of transition metals(TM)on lattice parameters,electron work function(EWF),bonding charge density,and hardness of HEBs are comprehensively investigated by the first-principles calculations,including(TiZrHfNbTa)B_(2),(TiZrHfNbMo)B_(2),(TiZrHfTaMo)B_(2),(TiZrNbTaMo)B_(2),and(TiHfNbTaMo)B_(2).It is revealed that the disordered TM atoms result in a severe local lattice distortion and the formation of weak spots.In view of bonding charge density,it is understood that the degree of electron contribution of TM atoms directly affects the bonding strength of the metallic layer,contributing to the optimized hardness of HEBs.Moreover,the proposed power-law-scaled relationship integrating the EWF and the grain size yields an excellent agreement between our predicted results and those reported experimental ones.It is found that the HEBs exhibit relatively high hardness which is higher than those of single transition metal diborides.In particular,the hardness of(TiZrNbTaMo)B_(2)and(TiHfNbTaMo)B_(2)can be as high as29.15 and 28.02 GPa,respectively.This work provides a rapid strategy to discover/design advanced HEBs efficiently,supported by the coupling hardening mechanisms of solid solution and grain refinement based on the atomic and electronic interactions. 展开更多
关键词 High-entropy diborides(HEBs) Hardness Electronic structure Lattice distortion POWER-LAW
原文传递
The scaling laws of cabin structures subjected to internal blast loading:Experimental and numerical studies 被引量:3
13
作者 Xian-ben Ren Zhi-xin Huang +4 位作者 Yong-bo Jiang Zi-hao Chen Xiao-fei Cao Tian Zhao Ying Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期811-822,共12页
This paper presents a combination of experimental and numerical investigations on the dynamic response of scaling cabin structures under internal blast loading.The purpose of this study is to modify the similar relati... This paper presents a combination of experimental and numerical investigations on the dynamic response of scaling cabin structures under internal blast loading.The purpose of this study is to modify the similar relationship between the scaled-down model and the prototype of the cabin structures under internal blast loading.According to the Hopkinson’s scaling law,three sets of cabin structure models with different scaling factors combined with different explosive masses were designed for the experimental study.The dynamic deformation process of the models was recorded by a three-dimensional digital imaging correlation(DIC)method and a 3D scanning technology was used to reconstruct the deformation modes of the specimen.In addition,a finite element model was developed for the modification of the scaling law.The experimental results showed that the final deflection-to-thickness ratio was increased with the increase of the model size despite of the similar trend of their deformation processes.The reason for this inconsistency was discussed based on the traditional scaling law and a modified formula considering of the effects of size and strain-rate was provided. 展开更多
关键词 Internal blast Cabin structure Scaling law Experimental study Numerical simulation
在线阅读 下载PDF
Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance 被引量:3
14
作者 Guoquan Suo Dan Li +6 位作者 Lei Feng Xiaojiang Hou Xiaohui Ye Li Zhang Qiyao Yu Yanling Yang Wei(Alex)Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第20期167-172,共6页
Increasing attention has been focused on potassium ion batteries(KIBs) as promising energy-sto rage system(ESS) owing to the abundance and low-cost of potassium resources.Here,SnS2/SnO2 hete rostructures were successf... Increasing attention has been focused on potassium ion batteries(KIBs) as promising energy-sto rage system(ESS) owing to the abundance and low-cost of potassium resources.Here,SnS2/SnO2 hete rostructures were successfully fixed onto stainless steel mesh(SnS2/SnO2/SSM) through a facile two-step hydrothermal method and used as anodes for KIBs.Due to the advantages of SnS2/SnO2 heterostructures and good conductivity of SSM substrate,the SnS2/SnO2/SSM anodes display enhanced electrochemical performance.The SnS2/SnO2/SSM anodes deliver specific capacity of 394 mA h g^-1 at 50 mA g^-1 over 100 cycles,better than SnO2/SSM.Even at 500 mA g^-1 after 250 cycles,high capacity of 155 mA h g^-1 can still be obtained. 展开更多
关键词 SnS2/SnO2 HETEROSTRUCTURES Potassium-ion batteries ANODE
原文传递
Microstructure and Wear Properties of Fe-based Amorphous Coatings Deposited by High-velocity Oxygen Fuel Spraying 被引量:6
15
作者 Gang WANG Ping XIAO +1 位作者 Zhong-jia HUANG Ru-jie HE 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第7期699-704,共6页
Fe-based powder with a composition of Fe_(42.87)Cr_(15.98)Mo_(16.33)C_(15.94)B_(8.88)(at.%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the... Fe-based powder with a composition of Fe_(42.87)Cr_(15.98)Mo_(16.33)C_(15.94)B_(8.88)(at.%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the microstructure and the wear properties of the Fe-based alloy coatings were systematically studied.The results showed that the obtained Fe-based coatings with a thickness of about 400μm consisted of a large-volume amorphous phase and some nanocrystals.With increasing the fuel and oxygen flow rates,the porosity of the obtained coatings decreased.The coating deposited under optimized parameters exhibited the lowest porosity of 2.8%.The excellent wear resistance of this coating was attributed to the properties of the amorphous matrix and the presence of nanocrystals homogeneously distributed within the matrix.The wear mechanism of the coatings was discussed on the basis of observations of the worn surfaces. 展开更多
关键词 metallic glass high-velocity oxygen fuel Fe-based amorphous coating micro-hardness wear resistance
原文传递
Low-temperature graphitization of lignin via Co-assisted electrolysis in molten salt 被引量:2
16
作者 Shijie Li Wei-Li Song +3 位作者 Xue Han Qingqing Cui Yan-li Zhu Shuqiang Jiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1449-1458,共10页
The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was... The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was proposed to prepare highly graphitized carbon materials from an abundant natural resource-lignin (LG).The preparation process mainly includes pyrolytic carbonization of raw LG material and electrochemical conversion of amorphous carbon precursor.Interestingly,with the assistance of Co catalyst,the graphitization degree of the products was significantly improved,in which the mechanism was the removal of heteroatoms in LG and the rearrangement of carbon atoms into graphite lattice.Furthermore,tunable microstructures (nanoflakes) under catalytic effects could also be observed by controlling the electrolytic parameters.Compared with the products CN1 (without catalyst) and CN5 (with 10%catalyst),the specific surface area are 158.957 and 202.246 m^(2)g^(-1),respectively.When used as the electrode material for lithium-ion batteries,CN5 delivered a competitive specific capacity of~350 m Ah g^(-1)(0.5 C) compared with commercial graphite.The strategy proposed in this work provides an effective way to extract value-added graphite materials from lignin and can be extended to the graphitization conversion of any other amorphous carbon precursor materials. 展开更多
关键词 LIGNIN Graphitic carbon Electrochemical conversion Lithium-ion batteries
在线阅读 下载PDF
In-situ X-ray computed tomography tensile tests and analysis of damage mechanism and mechanical properties in laser powder b e d fused Invar 36 alloy 被引量:1
17
作者 Qidong Yang Shuo Yang +6 位作者 Shiyu Ma Junhan Zhou Ye Zhou Rongzheng Huang Kai Wei Zhaoliang Qu Xujing Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期29-46,共18页
Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,... Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy. 展开更多
关键词 Invar 36 alloy Laser powder bed fusion Microstructure Pore defects Mechanical property X-ray tomography in-situ tensile test
原文传递
Compressive Mechanical and Heat Conduction Properties of AlSi10Mg Gradient Metamaterials Fabricated via Laser Powder Bed Fusion 被引量:1
18
作者 Qidong Sun Geng Zhi +2 位作者 Sheng Zhou Ran Tao Junfeng Qi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期76-93,共18页
Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive ... Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive mechanical and heat transfer properties of AlSi10Mg gradient metamaterials fabricated by Laser Powder Bed Fusion(LPBF).The morphology of the AlSi10Mg metamaterials was examined using an ultrahigh-resolution microscope.Quasi-static uniaxial compression tests were conducted at room temperature,with deformation behavior captured through camera recordings.The findings indicate that the proposed gradient metamaterial exhibits superior compressive strength properties and energy absorption capacity.The Gradient-SplitP structure demonstrated better compressive performance compared to other strut-based structures,including Gradient-Gyroid and Gradient-Lidinoid structures.With an apparent density of 0.796,the Gradient-SplitP structure exhibited an outstanding energy absorption capacity,reaching an impressive 23.57 MJ/m^(3).In addition,heat conductivity tests were performed to assess the thermal resistance of these structures with different cell configurations.The gradient metamaterials exhibited higher thermal resistance and lower thermal conductivity.Consequently,the designed gradient metamaterials can be considered valuable in various applications,such as thermal management,load-bearing,and energy absorption components. 展开更多
关键词 Compressive mechanical properties Thermal conductivity Finite element analysis Gradient metamaterials Laser powder bed fusion
在线阅读 下载PDF
Mechanics and Wave Propagation Characterization of Chiral S-Shaped Auxetic Metastructure
19
作者 Qingsong Zhang Wenjie Hong +4 位作者 Jianfei Xu Yuhang Zhang Suhang Ding Wenwang Wu Re Xia 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第4期571-586,共16页
Auxetic metastructures have attracted tremendous attention because of their robust multifunctional properties and promising potential industrial applications.This paper studies the in-plane mechanical behaviors of a c... Auxetic metastructures have attracted tremendous attention because of their robust multifunctional properties and promising potential industrial applications.This paper studies the in-plane mechanical behaviors of a chiral S-shaped metastructure subjected to tensile loading in both X-direction and Y-direction and wave propagation properties using the finite element(FE)method.The relationships between structural parameters and elastic behaviors are also discussed.The results indicate that the orientation of chiral S-shaped metastructure under tensile loading in the X-direction exhibits higher auxeticity and stiffness.Then,the band structures and the edge modes of each band gap of the chiral S-shaped metastructure are explored,and the relations between band gap properties and structural parameters are also systematically analyzed.Moreover,we explore the wave mitigation of the chiral S-shaped metastructures by regulating the structural parameters.Finally,the transmission properties of the finite chiral S-shaped periodic metastructures are studied to confirm the results of band gap simulation.This study promotes the engineering application of vibration isolation of chiral structures based on the band gap theory. 展开更多
关键词 Auxetic metastructures Mechanical properties Band gaps Wave mitigation
原文传递
Superior strength-ductility synergy of wire-arc directed energy deposited Mg-Al-Si alloys mediated by sub-rapid solidification 被引量:1
20
作者 Qifei Han Yueling Guo +3 位作者 Jinlong Hu Rui Fu Yangyu Yan Changmeng Liu 《Journal of Magnesium and Alloys》 CSCD 2024年第11期4594-4609,共16页
Here we propose to employ wire-arc directed energy deposition(WA-DED) to tune the microstructure and the mechanical property of Mg-Al-Si alloys, on the basis of its sub-rapid solidification effect. According to finite... Here we propose to employ wire-arc directed energy deposition(WA-DED) to tune the microstructure and the mechanical property of Mg-Al-Si alloys, on the basis of its sub-rapid solidification effect. According to finite element analysis, WA-DED shows higher cooling rate than conventional casting, reaching 598.3 K/s for Mg-Al-Si alloy, and the lower heat input, the larger cooling rate of WA-DED. Significant microstructure refinement is thus achieved, with reduced grain size and Mg_(2)Si particle diameter. The transition from hypereutectic to fully eutectic microstructure is triggered by reducing the heat input. Compared with the as-cast alloy, WA-DED alloys demonstrate higher ultimate tensile strengths(UTS) at both room-and high-temperature(150℃) properties, increasing by 50.1% and 30.3%, respectively. The superior strength-ductility synergy for Mg-Al-Si alloys results from the microstructure tuning via sub-rapid solidification of WA-DED. 展开更多
关键词 Wire-arc directed energy deposition Mg-Al-Si alloys Microstructure High temperature stength Sub-rapid solidification.
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部