A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can ...A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can hardly be seen in the results obtained by traditional imaging algorithm.To solve this problem,we propose a millimeter-wave LFMCW radar imaging algorithm for water surface texture.Different from the traditional imaging algorithm,the proposed imaging algorithm includes two improvements as follows:Firstly,the interference from static targets is removed through a frequency domainfilter;Secondly,the multiplicative noises are reduced by the maximum likelihood estimation method,which is used to estimatethe azimuth spectrum parameters to calculate the energy of water surface echo.Final results show that the proposed algorithmcan obtain water surface texture,which means that the proposed algorithm is superior to the traditional imaging algorithm.展开更多
Collinear phase-matching of sum-frequency generation(SFG) has been studied thoroughly previously, while non-collinear schemes are sometimes more flexible in application. However, this phase-matching type is more diffi...Collinear phase-matching of sum-frequency generation(SFG) has been studied thoroughly previously, while non-collinear schemes are sometimes more flexible in application. However, this phase-matching type is more difficult to meet and control. We employ a convenient method to obtain harmonic generation in bulk potassium dihydrogen phosphate(KDP), using an incident wave vector and a reflected wave vector to create a triangle phase-matching relationship. With a simple, flexible set-up, we can observe 351 nm SFG, and the conversion efficiency is up to ~3.6% per reflection. Furthermore, we believe this approach has potential application value and improvement space.展开更多
文摘A millimeter-wave linear frequency modulated continuous wave(LFM CW)radar is applied to water surface detection.This paper presents the experiment and imaging algorithm.In imaging processing,water surface texture can hardly be seen in the results obtained by traditional imaging algorithm.To solve this problem,we propose a millimeter-wave LFMCW radar imaging algorithm for water surface texture.Different from the traditional imaging algorithm,the proposed imaging algorithm includes two improvements as follows:Firstly,the interference from static targets is removed through a frequency domainfilter;Secondly,the multiplicative noises are reduced by the maximum likelihood estimation method,which is used to estimatethe azimuth spectrum parameters to calculate the energy of water surface echo.Final results show that the proposed algorithmcan obtain water surface texture,which means that the proposed algorithm is superior to the traditional imaging algorithm.
基金supported by the National Natural Science Foundation of China(Nos.61775199,61505189,and 11704352)the Presidential Foundation of CAEP(No.201501023)
文摘Collinear phase-matching of sum-frequency generation(SFG) has been studied thoroughly previously, while non-collinear schemes are sometimes more flexible in application. However, this phase-matching type is more difficult to meet and control. We employ a convenient method to obtain harmonic generation in bulk potassium dihydrogen phosphate(KDP), using an incident wave vector and a reflected wave vector to create a triangle phase-matching relationship. With a simple, flexible set-up, we can observe 351 nm SFG, and the conversion efficiency is up to ~3.6% per reflection. Furthermore, we believe this approach has potential application value and improvement space.