The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhanc...The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhancement factor was 4 comparing with the magnetic field modulated SPCE without MNPs.This is the new observation for the magnetic field modulated SPCE,and this method was designed as a biosensor,which to our knowledge,is the first application of magnetic field-modulated SPCE in biosensing and detection field.This strategy is a universal approach to increase the fluorescence signal and helps to build the new SPCE based stimulus-response system.展开更多
Iron catalyst nanoparticles were prepared on silicon wafers by spin-coating colloidal solutions containing iron nitrate, polyethylene glycol (PEG) and absolute ethanol. The effects of various spin-coating conditions...Iron catalyst nanoparticles were prepared on silicon wafers by spin-coating colloidal solutions containing iron nitrate, polyethylene glycol (PEG) and absolute ethanol. The effects of various spin-coating conditions were investigated. The findings showed that the size of the iron particles was governed by the composition of the colloidal solution used and that a high angular speed was responsible for the formation of a thin colloidal film.The effect of angular acceleration on the size and distribution of the iron particles were found to be insignificant. It was observed that a longer spin-coating duration provoked the agglomeration of iron particles, leading to the formation of large particles. We also showed that single-walled carbon nanotubes could be grown from the smallest iron catalyst nanoparticles after the chemical vapor deposition of methane.展开更多
基金Financial support from the National Natural Science Foundation of China(Nos.21874110,21375111,21505109,21521004 and 21804098)the Fund of the Ministry of Education of China(No. IRT17R66)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802104)
文摘The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhancement factor was 4 comparing with the magnetic field modulated SPCE without MNPs.This is the new observation for the magnetic field modulated SPCE,and this method was designed as a biosensor,which to our knowledge,is the first application of magnetic field-modulated SPCE in biosensing and detection field.This strategy is a universal approach to increase the fluorescence signal and helps to build the new SPCE based stimulus-response system.
基金financial support provided by Universiti Sains Malaysia(USM Fellowship)the Fundamental Research Grant Scheme(FRGS)the Long Term Research Scheme(LRGS)
文摘Iron catalyst nanoparticles were prepared on silicon wafers by spin-coating colloidal solutions containing iron nitrate, polyethylene glycol (PEG) and absolute ethanol. The effects of various spin-coating conditions were investigated. The findings showed that the size of the iron particles was governed by the composition of the colloidal solution used and that a high angular speed was responsible for the formation of a thin colloidal film.The effect of angular acceleration on the size and distribution of the iron particles were found to be insignificant. It was observed that a longer spin-coating duration provoked the agglomeration of iron particles, leading to the formation of large particles. We also showed that single-walled carbon nanotubes could be grown from the smallest iron catalyst nanoparticles after the chemical vapor deposition of methane.