期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DPA-2:a large atomic model as a multitask learner 被引量:3
1
作者 Duo Zhang Xinzijian Liu +40 位作者 Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang 《npj Computational Materials》 CSCD 2024年第1期185-199,共15页
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and design.AI-driven potential energy models havedemonstrated the capability to conduct large-sc... The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and design.AI-driven potential energy models havedemonstrated the capability to conduct large-scale,long-duration simulations with the accuracy of ab initio electronic structure methods.However,the model generation process remains a bottleneck for large-scale applications.We propose a shift towards a model-centric ecosystem,wherein a large atomic model(LAM),pretrained across multiple disciplines,can be efficiently fine-tuned and distilled for various downstream tasks,thereby establishing a new framework for molecular modeling.In this study,we introduce the DPA-2 architecture as a prototype for LAMs.Pre-trained on a diverse array of chemical and materials systemsusing a multi-task approach,DPA-2demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies.Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research. 展开更多
关键词 DPA establishing thereby
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部