In June 2012,the UN conference on sustainable development "Rio+20" summarized the work of the world community in this direction for last 20 years and outlined the tasks for the future.The UN website contains...In June 2012,the UN conference on sustainable development "Rio+20" summarized the work of the world community in this direction for last 20 years and outlined the tasks for the future.The UN website contains enough information to estimate the importance of global problems and "green economy," taking into account a very complicated state of the global and Russian markets which are balancing on the verge of crisis.Unfortunately,the website does not contain the materials of the 6th civilization forum "Long-Term Strategy for Sustainable Development on the Basis of Partnership of Civilizations:Concepts,Strategy,Programs and Projects" within the bounds of "Rio+20" which has considered the problems of a dialogue and partnership in conditions of extensive globalization.These problems are covered in the Partnership of Civilizations Journal which is issued in the Russian,English and Arabian languages,including its Internet version.The International Informatization Academy (it has the general consultative status at the Economic and Social Council of the UN) and its 20-year activity in the sphere of informatization of the world and Russia on the way to the partnership of civilizations,are presented there[1].展开更多
In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of th...In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of the Chinese nation,carries thousands of years of wisdom and practical experience.However,in the context of the rapid advancements in modern medicine and technology,TCM faces dual challenges:preserving its heritage while innovating.DeepSeek,a major achievement in the field of AI,offers a new opportunity for the development of TCM with its powerful technological capabilities.Exploring the integration of DeepSeek with TCM not only helps modernize the practice but also promises unique contributions to global health.展开更多
In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by pred...In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by predicting students’future performance through the analysis of historical interaction data,thereby assisting educators in evaluating knowledgemastery and tailoring instructional strategies.Traditional knowledge tracingmethods,largely based on Recurrent Neural Networks(RNNs)and Transformer models,primarily focus on capturing long-term interaction patterns in sequential data.However,these models may neglect crucial short-term dynamics and other relevant features.This paper introduces a novel approach to knowledge tracing by leveraging a pure Multilayer Perceptron(MLP)architecture.We proposeMixerKT,a knowledge tracing model based on theHyperMixer framework,which uniquely integrates global and localMixer feature extractors.This architecture enables more effective extraction of both long-terminteraction trends and recent learning behaviors,addressing limitations in currentmodels thatmay overlook these key aspects.Empirical evaluations on twowidely-used datasets,ASSIS Tments2009 and Algebra2005,demonstrate that MixerKT consistently outperforms several state-of-the-art models,including DKT,SAKT,and Separated Self-Attentive Neural Knowledge Tracing(SAINT).Specifically,MixerKT achieves higher prediction accuracy,highlighting its effectiveness in capturing the nuances of learners’knowledge states.These results indicate that our model provides a more comprehensive representation of student learning patterns,enhancing the ability to predict future performance with greater precision.展开更多
In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential in...In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential insights gained from broader data analysis due to concerns over privacy and data sharing.This article introduces a novel approach that leverages Federated Learning(FL)to enhance TV ad schedule optimization,combining the strengths of local optimization techniques with the power of global Machine Learning(ML)models to uncover actionable insights without compromising data privacy.It combines linear programming for initial ads scheduling optimization with ML—specifically,a K-Nearest Neighbors(KNN)model—for predicting ad spot positions.Taking into account the diversity and the difficulty of the ad-scheduling problem,we propose a prescriptivepredictive approach in which first the position of the ads is optimized(using Google’s OR-Tools CP-SAT)and then the scheduled position of all ads will be the result of the optimization problem.Second,this output becomes the target of a predictive task that predicts the position of new entries based on their characteristics ensuring the implementation of the scheduling at large scale(using KNN,Light Gradient Boosting Machine and Random Forest).Furthermore,we explore the integration of FL to enhance predictive accuracy and strategic insight across different broadcasting networks while preserving data privacy.The FL approach resulted in 8750 ads being precisely matched to their optimal category placements,showcasing an alignment with the intended diversity objectives.Additionally,there was a minimal deviation observed,with 1133 ads positioned within a one-category variance from their ideal placement in the original dataset.展开更多
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse...Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.展开更多
This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain an...This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain and generative AI,the research team aimed to address the timely challenge of safeguarding visual medical content.The participating researchers conducted a comprehensive analysis,examining the vulnerabilities of medical AI services,personal information protection issues,and overall security weaknesses.This multi faceted exploration led to an indepth evaluation of the model’s performance and security.Notably,the correlation between accuracy,detection rate,and error rate was scrutinized.This analysis revealed insights into the model’s strengths and limitations,while the consideration of standard deviation shed light on the model’s stability and performance variability.The study proposed practical improvements,emphasizing the reduction of false negatives to enhance detection rate and leveraging blockchain technology to ensure visual data integrity in medical applications.Applying blockchain to generative AI-created medical content addresses key personal information protection issues.By utilizing the distributed ledger system of blockchain,the research team aimed to protect the privacy and integrity of medical data especially medical images.This approach not only enhances security but also enables transparent and tamperproof record-keeping.Additionally,the use of generative AI models ensures the creation of novel medical content without compromising personal information,further safeguarding patient privacy.In conclusion,this study showcases the potential of blockchain-based solutions in the medical field,particularly in securing sensitive medical data and protecting patient privacy.The proposed approach,combining blockchain and generative AI,offers a promising direction toward more robust and secure medical content management.Further research and advancements in this area will undoubtedly contribute to the development of robust and privacy-preserving healthcare systems,and visual diagnostic systems.展开更多
Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various as...Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly im...Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly improved optoelectronic performance.In this work,we studied the effect of introducing halogen precursors on the structure of classical PbS nanocrystals(NCs)during the synthesis process and realized the preparation of PbS/Pb_(3)S_(2)X_(2) core/shell structure for the first time.The core/shell structure can effectively improve their optical properties.Furthermore,our approach enables the synthesis of Pb_(3)S_(2)Br_(2) that had not yet been reported.Our results not only provide valuable insights into the heterogeneous integration of PbYX and PbY materials to elevate material properties but also provide an effective method for further expanding the preparation of PbYX material systems.展开更多
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num...Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper th...Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.展开更多
Image style transfer is a research hotspot in the field of computer vision.For this job,many approaches have been put forth.These techniques do,however,still have some drawbacks,such as high computing complexity and c...Image style transfer is a research hotspot in the field of computer vision.For this job,many approaches have been put forth.These techniques do,however,still have some drawbacks,such as high computing complexity and content distortion caused by inadequate stylization.To address these problems,PhotoGAN,a new Generative AdversarialNetwork(GAN)model is proposed in this paper.A deeper feature extraction network has been designed to capture global information and local details better.Introducingmulti-scale attention modules helps the generator focus on important feature areas at different scales,further enhancing the effectiveness of feature extraction.Using a semantic discriminator helps the generator learn quickly and better understand image content,improving the consistency and visual quality of the generated images.Finally,qualitative and quantitative experiments were conducted on a self-built dataset.The experimental results indicate that PhotoGAN outperformed the current state-of-the-art techniques.It not only performed excellently on objective metrics but also appeared more visually appealing,particularly excelling in handling complex scenes and details.展开更多
The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma g...The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.展开更多
A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associate...A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence.展开更多
Many real⁃world machine learning applications face the challenge of dealing with changing data over time,known as concept drift,and the issue of data indeterminacy,where all the true labels available are unrealistic.T...Many real⁃world machine learning applications face the challenge of dealing with changing data over time,known as concept drift,and the issue of data indeterminacy,where all the true labels available are unrealistic.This can lead to a decrease in the accuracy of the prediction models.The aim of this study is to introduce a new approach for detecting drift,which is based on neutrosophic set theory.This approach takes into account uncertainty in the prediction model and is able to handle indeterminate information,considering its impact on the models performance.The proposed method reads data into windows and calculates a set of values based on the concept of neutrosophic membership.These values are then used in the Neutrosophic Support Vector Machine(N⁃SVM).To address the issue of indeterminate true label data,the values issued by N⁃SVM are expressed as entropy and used as input for the ADWIN(Adaptive Windowing)change detector.When a drift is detected,the prediction model is retrained by including only the most recent instances with the original training data set.The proposed method gives promising results in terms of drift detection accuracy compared to the state of existing drift detection methods such as KSWIN,ADWIN,and DWM.展开更多
In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensit...In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence.展开更多
BACKGROUND Atopic dermatitis(AD),or eczema,is a chronic,pruritic inflammatory skin disease affecting children and adults.Socioeconomic status(SES)plays a significant role in developing AD.However,mixed evidence from a...BACKGROUND Atopic dermatitis(AD),or eczema,is a chronic,pruritic inflammatory skin disease affecting children and adults.Socioeconomic status(SES)plays a significant role in developing AD.However,mixed evidence from a previous study by Bajwa et al makes it difficult to determine the directionality of the association.There is a lite-rature gap in understanding the causal association between AD and socioeco-nomic factors.AIM To evaluate the impact of disparities in SES on pediatric AD populations.METHODS Based on the eligibility criteria,the literature review identified eight articles since July 2021,and a descriptive analysis was conducted using an Excel spreadsheet on key components collected from the identified studies.RESULTS Eight observational studies assessed SES in pediatric AD.Five observational studies showed mixed associations between AD and SES.Sub-analysis revealed that urban areas had a higher prevalence of AD,and four studies identified a positive association between parental education and AD in the pediatric popu-lation.Socioeconomic variables,such as residential areas and household income,significantly influence disease outcomes.CONCLUSION There is mixed association between pediatric AD and SES,with AD positively associated with parental education.There is critical need to evaluate global impact of SES variables on pediatric AD.展开更多
This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can ...This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can achieve multivalued many-to-one associative memory,and the newly developed algorithms enable effective storage of many-to-one patterns in the coefficient matrix while maintaining the indispensability of inputs in many-to-one associative memory.The proposed learning algorithm addresses a critical limitation of existing models which fail to ensure completely erroneous outputs when facing partial input missing in many-to-one associative memory tasks.The methodology is rigorously derived through theoretical analysis,incorporating comprehensive verification of both the existence and global exponential stability of equilibrium points.Demonstrative examples are provided in the paper to show the effectiveness of the proposed theory.展开更多
This review examines human vulnerabilities in cybersecurity within Microfinance Institutions, analyzing their impact on organizational resilience. Focusing on social engineering, inadequate security training, and weak...This review examines human vulnerabilities in cybersecurity within Microfinance Institutions, analyzing their impact on organizational resilience. Focusing on social engineering, inadequate security training, and weak internal protocols, the study identifies key vulnerabilities exacerbating cyber threats to MFIs. A literature review using databases like IEEE Xplore and Google Scholar focused on studies from 2019 to 2023 addressing human factors in cybersecurity specific to MFIs. Analysis of 57 studies reveals that phishing and insider threats are predominant, with a 20% annual increase in phishing attempts. Employee susceptibility to these attacks is heightened by insufficient training, with entry-level employees showing the highest vulnerability rates. Further, only 35% of MFIs offer regular cybersecurity training, significantly impacting incident reduction. This paper recommends enhanced training frequency, robust internal controls, and a cybersecurity-aware culture to mitigate human-induced cyber risks in MFIs.展开更多
文摘In June 2012,the UN conference on sustainable development "Rio+20" summarized the work of the world community in this direction for last 20 years and outlined the tasks for the future.The UN website contains enough information to estimate the importance of global problems and "green economy," taking into account a very complicated state of the global and Russian markets which are balancing on the verge of crisis.Unfortunately,the website does not contain the materials of the 6th civilization forum "Long-Term Strategy for Sustainable Development on the Basis of Partnership of Civilizations:Concepts,Strategy,Programs and Projects" within the bounds of "Rio+20" which has considered the problems of a dialogue and partnership in conditions of extensive globalization.These problems are covered in the Partnership of Civilizations Journal which is issued in the Russian,English and Arabian languages,including its Internet version.The International Informatization Academy (it has the general consultative status at the Economic and Social Council of the UN) and its 20-year activity in the sphere of informatization of the world and Russia on the way to the partnership of civilizations,are presented there[1].
文摘In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of the Chinese nation,carries thousands of years of wisdom and practical experience.However,in the context of the rapid advancements in modern medicine and technology,TCM faces dual challenges:preserving its heritage while innovating.DeepSeek,a major achievement in the field of AI,offers a new opportunity for the development of TCM with its powerful technological capabilities.Exploring the integration of DeepSeek with TCM not only helps modernize the practice but also promises unique contributions to global health.
基金supported by National Natural Science Foundation of China(Nos.62266054 and 62166050)Key Program of Fundamental Research Project of Yunnan Science and Technology Plan(No.202201AS070021)+2 种基金Yunnan Fundamental Research Projects(No.202401AT070122)Yunnan International Joint Research and Development Center of China-Laos-Thailand Educational Digitalization(No.202203AP140006)Scientific Research Foundation of Yunnan Provincial Department of Education(No.2024Y159).
文摘In the field of intelligent education,the integration of artificial intelligence,especially deep learning technologies,has garnered significant attention.Knowledge tracing(KT)plays a pivotal role in this field by predicting students’future performance through the analysis of historical interaction data,thereby assisting educators in evaluating knowledgemastery and tailoring instructional strategies.Traditional knowledge tracingmethods,largely based on Recurrent Neural Networks(RNNs)and Transformer models,primarily focus on capturing long-term interaction patterns in sequential data.However,these models may neglect crucial short-term dynamics and other relevant features.This paper introduces a novel approach to knowledge tracing by leveraging a pure Multilayer Perceptron(MLP)architecture.We proposeMixerKT,a knowledge tracing model based on theHyperMixer framework,which uniquely integrates global and localMixer feature extractors.This architecture enables more effective extraction of both long-terminteraction trends and recent learning behaviors,addressing limitations in currentmodels thatmay overlook these key aspects.Empirical evaluations on twowidely-used datasets,ASSIS Tments2009 and Algebra2005,demonstrate that MixerKT consistently outperforms several state-of-the-art models,including DKT,SAKT,and Separated Self-Attentive Neural Knowledge Tracing(SAINT).Specifically,MixerKT achieves higher prediction accuracy,highlighting its effectiveness in capturing the nuances of learners’knowledge states.These results indicate that our model provides a more comprehensive representation of student learning patterns,enhancing the ability to predict future performance with greater precision.
基金supported by a grant of the Ministry of Research,Innovation and Digitization,CNCS/CCCDI-UEFISCDI,project number COFUND-DUT-OPEN4CEC-1,within PNCDI IV.
文摘In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential insights gained from broader data analysis due to concerns over privacy and data sharing.This article introduces a novel approach that leverages Federated Learning(FL)to enhance TV ad schedule optimization,combining the strengths of local optimization techniques with the power of global Machine Learning(ML)models to uncover actionable insights without compromising data privacy.It combines linear programming for initial ads scheduling optimization with ML—specifically,a K-Nearest Neighbors(KNN)model—for predicting ad spot positions.Taking into account the diversity and the difficulty of the ad-scheduling problem,we propose a prescriptivepredictive approach in which first the position of the ads is optimized(using Google’s OR-Tools CP-SAT)and then the scheduled position of all ads will be the result of the optimization problem.Second,this output becomes the target of a predictive task that predicts the position of new entries based on their characteristics ensuring the implementation of the scheduling at large scale(using KNN,Light Gradient Boosting Machine and Random Forest).Furthermore,we explore the integration of FL to enhance predictive accuracy and strategic insight across different broadcasting networks while preserving data privacy.The FL approach resulted in 8750 ads being precisely matched to their optimal category placements,showcasing an alignment with the intended diversity objectives.Additionally,there was a minimal deviation observed,with 1133 ads positioned within a one-category variance from their ideal placement in the original dataset.
基金supported in part by NIH grants R01NS39600,U01MH114829RF1MH128693(to GAA)。
文摘Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons.
文摘This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain and generative AI,the research team aimed to address the timely challenge of safeguarding visual medical content.The participating researchers conducted a comprehensive analysis,examining the vulnerabilities of medical AI services,personal information protection issues,and overall security weaknesses.This multi faceted exploration led to an indepth evaluation of the model’s performance and security.Notably,the correlation between accuracy,detection rate,and error rate was scrutinized.This analysis revealed insights into the model’s strengths and limitations,while the consideration of standard deviation shed light on the model’s stability and performance variability.The study proposed practical improvements,emphasizing the reduction of false negatives to enhance detection rate and leveraging blockchain technology to ensure visual data integrity in medical applications.Applying blockchain to generative AI-created medical content addresses key personal information protection issues.By utilizing the distributed ledger system of blockchain,the research team aimed to protect the privacy and integrity of medical data especially medical images.This approach not only enhances security but also enables transparent and tamperproof record-keeping.Additionally,the use of generative AI models ensures the creation of novel medical content without compromising personal information,further safeguarding patient privacy.In conclusion,this study showcases the potential of blockchain-based solutions in the medical field,particularly in securing sensitive medical data and protecting patient privacy.The proposed approach,combining blockchain and generative AI,offers a promising direction toward more robust and secure medical content management.Further research and advancements in this area will undoubtedly contribute to the development of robust and privacy-preserving healthcare systems,and visual diagnostic systems.
基金supported by National Natural Science Foundation of China(32122066,32201855)STI2030—Major Projects(2023ZD04076).
文摘Phenotypic prediction is a promising strategy for accelerating plant breeding.Data from multiple sources(called multi-view data)can provide complementary information to characterize a biological object from various aspects.By integrating multi-view information into phenotypic prediction,a multi-view best linear unbiased prediction(MVBLUP)method is proposed in this paper.To measure the importance of multiple data views,the differential evolution algorithm with an early stopping mechanism is used,by which we obtain a multi-view kinship matrix and then incorporate it into the BLUP model for phenotypic prediction.To further illustrate the characteristics of MVBLUP,we perform the empirical experiments on four multi-view datasets in different crops.Compared to the single-view method,the prediction accuracy of the MVBLUP method has improved by 0.038–0.201 on average.The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0110300)the National Natural Science Foundation of China(Grant Nos.52372215,92163114,and 52202274)+5 种基金the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20230504)the Special Fund for the"Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research program)(Grant Nos.BE2022023 and BE2022021)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.21KJA430004)Gusu Innovation and Entre preneurship Leading Talent Program(Grant No.ZXL2022451)the China Postdoctoral Science Foundation(Grant No.2023M732523)supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project.
文摘Lead chalcohalides(PbYX,X=Cl,Br,I;Y=S,Se)is an extension of the classic Pb chalcogenides(PbY).Constructing the heterogeneous integration with PbYX and PbY material systems makes it possible to achieve significantly improved optoelectronic performance.In this work,we studied the effect of introducing halogen precursors on the structure of classical PbS nanocrystals(NCs)during the synthesis process and realized the preparation of PbS/Pb_(3)S_(2)X_(2) core/shell structure for the first time.The core/shell structure can effectively improve their optical properties.Furthermore,our approach enables the synthesis of Pb_(3)S_(2)Br_(2) that had not yet been reported.Our results not only provide valuable insights into the heterogeneous integration of PbYX and PbY materials to elevate material properties but also provide an effective method for further expanding the preparation of PbYX material systems.
文摘Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金supported by the National Natural Science Foundation of China(82071143,82371000,82270361)Key Research and Development Program of Jiangsu Province(BE2022795)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_1801)the Jiangsu Province Capability Improvement Project through the Science,Technology and Education-Jiangsu Provincial Research Hospital Cultivation Unit(YJXYYJSDW4)Jiangsu Provincial Medical Innovation Center(CXZX202227).
文摘Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
基金funded by the Key R&D and Transformation Projects of Xizang(Tibet)Autonomous Region Science and Technology Program(funder:the Department of Science and Technology of the Xizang(Tibet)Autonomous Region),funding(grant)number:XZ202401ZY0004.
文摘Image style transfer is a research hotspot in the field of computer vision.For this job,many approaches have been put forth.These techniques do,however,still have some drawbacks,such as high computing complexity and content distortion caused by inadequate stylization.To address these problems,PhotoGAN,a new Generative AdversarialNetwork(GAN)model is proposed in this paper.A deeper feature extraction network has been designed to capture global information and local details better.Introducingmulti-scale attention modules helps the generator focus on important feature areas at different scales,further enhancing the effectiveness of feature extraction.Using a semantic discriminator helps the generator learn quickly and better understand image content,improving the consistency and visual quality of the generated images.Finally,qualitative and quantitative experiments were conducted on a self-built dataset.The experimental results indicate that PhotoGAN outperformed the current state-of-the-art techniques.It not only performed excellently on objective metrics but also appeared more visually appealing,particularly excelling in handling complex scenes and details.
文摘The article discusses the use of pulse-width modulation signals to generate low-temperature atmospheric plasma in an inert gas environment.The results of studies of the energy consumption of a low-temperature plasma generation system depending on the duty rate,as well as the pulse repetition rate,are presented.The operating modes of the system have been established,in which a minimum of energy consumption is achieved.The issues of evaluating the interaction of plasma with objects based on the analysis of changes in signal parameters in the high-voltage circuit of the generator are also considered.
基金supported by grant D86-RALMI23CIVIE_01 awarded by the Italian Ministry of University and Research under the Program for Young Researchers“Rita Levi Montalcini”.
文摘A wide northeast-trending belt of intraplate alkaline volcanism,exhibiting similar geochemical characteristics,stretches from the Eastern Atlantic Ocean to the Cenozoic rift system in Europe.Its formation is associated with both passive and active mechanisms,but it remains a source of ongoing debate among geoscientists.Here,we show that seismic whole-mantle tomography models consistently identify two extensive low-velocity anomalies beneath the Canary Islands(CEAA)and Western-Central Europe(ECRA)at mid-mantle depths,merging near the core-mantle boundary.These low-velocity features are interpreted as two connected broad plumes originating from the top of the African LLSVP,likely feeding diapir-like upwellings in the upper mantle.The CEAA rises vertically,whereas the ECRA is tilted and dissipates at mantle transition zone depths,possibly due to the interaction with the cold Alpine subducted slab,which hinders its continuity at shallower depths.While plate-boundary forces are considered the primary drivers of rifting,the hypothesis that deep mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline volcanism,supported by geological,geophysical,and geochemical evidence.
文摘Many real⁃world machine learning applications face the challenge of dealing with changing data over time,known as concept drift,and the issue of data indeterminacy,where all the true labels available are unrealistic.This can lead to a decrease in the accuracy of the prediction models.The aim of this study is to introduce a new approach for detecting drift,which is based on neutrosophic set theory.This approach takes into account uncertainty in the prediction model and is able to handle indeterminate information,considering its impact on the models performance.The proposed method reads data into windows and calculates a set of values based on the concept of neutrosophic membership.These values are then used in the Neutrosophic Support Vector Machine(N⁃SVM).To address the issue of indeterminate true label data,the values issued by N⁃SVM are expressed as entropy and used as input for the ADWIN(Adaptive Windowing)change detector.When a drift is detected,the prediction model is retrained by including only the most recent instances with the original training data set.The proposed method gives promising results in terms of drift detection accuracy compared to the state of existing drift detection methods such as KSWIN,ADWIN,and DWM.
基金Education Science planning project of Jiangsu Province in 2024(Grant No:B-b/2024/01/152)2025 Jiangsu Normal University Graduate Research and Innovation Program school-level project“Research on the Construction and Desensitization Strategies of Education Sensitive Data Classification from the Perspective of Educational Ecology”。
文摘In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence.
文摘BACKGROUND Atopic dermatitis(AD),or eczema,is a chronic,pruritic inflammatory skin disease affecting children and adults.Socioeconomic status(SES)plays a significant role in developing AD.However,mixed evidence from a previous study by Bajwa et al makes it difficult to determine the directionality of the association.There is a lite-rature gap in understanding the causal association between AD and socioeco-nomic factors.AIM To evaluate the impact of disparities in SES on pediatric AD populations.METHODS Based on the eligibility criteria,the literature review identified eight articles since July 2021,and a descriptive analysis was conducted using an Excel spreadsheet on key components collected from the identified studies.RESULTS Eight observational studies assessed SES in pediatric AD.Five observational studies showed mixed associations between AD and SES.Sub-analysis revealed that urban areas had a higher prevalence of AD,and four studies identified a positive association between parental education and AD in the pediatric popu-lation.Socioeconomic variables,such as residential areas and household income,significantly influence disease outcomes.CONCLUSION There is mixed association between pediatric AD and SES,with AD positively associated with parental education.There is critical need to evaluate global impact of SES variables on pediatric AD.
基金supported by the National Natural Science Foundation of China(Grant Nos.62376105,12101208,and 61906072)the Fundamental Research Funds for the Central Universities(Grant No.2662022XXQD001).
文摘This paper proposes a novel multivalued recurrent neural network model driven by external inputs,along with two innovative learning algorithms.By incorporating a multivalued activation function,the proposed model can achieve multivalued many-to-one associative memory,and the newly developed algorithms enable effective storage of many-to-one patterns in the coefficient matrix while maintaining the indispensability of inputs in many-to-one associative memory.The proposed learning algorithm addresses a critical limitation of existing models which fail to ensure completely erroneous outputs when facing partial input missing in many-to-one associative memory tasks.The methodology is rigorously derived through theoretical analysis,incorporating comprehensive verification of both the existence and global exponential stability of equilibrium points.Demonstrative examples are provided in the paper to show the effectiveness of the proposed theory.
文摘This review examines human vulnerabilities in cybersecurity within Microfinance Institutions, analyzing their impact on organizational resilience. Focusing on social engineering, inadequate security training, and weak internal protocols, the study identifies key vulnerabilities exacerbating cyber threats to MFIs. A literature review using databases like IEEE Xplore and Google Scholar focused on studies from 2019 to 2023 addressing human factors in cybersecurity specific to MFIs. Analysis of 57 studies reveals that phishing and insider threats are predominant, with a 20% annual increase in phishing attempts. Employee susceptibility to these attacks is heightened by insufficient training, with entry-level employees showing the highest vulnerability rates. Further, only 35% of MFIs offer regular cybersecurity training, significantly impacting incident reduction. This paper recommends enhanced training frequency, robust internal controls, and a cybersecurity-aware culture to mitigate human-induced cyber risks in MFIs.